Influence of Substrate Temperature on Electrical and Optical Properties of Hydrogenated Boron Carbide Thin Films Deposited by RF Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XPS and REELS Analysis
3.2. Dielectric Constant
3.3. Resistivity
3.4. Optical Transmission
3.5. Optical Bandgap
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grill, A.; Gates, S.M.; Ryan, T.E.; Nguyen, S.V.; Priyadarshini, D. Progress in the development and understanding of advanced low k and ultralow k dielectrics for very large-scale integrated interconnects—State of the art. Appl. Phys. Rev. 2014, 1, 011306. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnarajan, M.M.; Pancharatna, P.D.; Hoffmann, R. Structure and bonding in boron carbide: The invincibility of imperfec-tions. New J. Chem. 2007, 31, 473–485. [Google Scholar] [CrossRef]
- Domnich, V.; Reynaud, S.; Haber, R.A.; Chhowalla, M. Boron Carbide: Structure, Properties, and Stability under Stress. J. Am. Ceram. Soc. 2011, 94, 3605–3628. [Google Scholar] [CrossRef]
- Reddy, K.M.; Liu, P.; Hirata, A.; Fujita, T.; Chen, M. Atomic structure of amorphous shear bands in boron carbide. Nat. Commun. 2013, 4, 2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sezer, A.O.; Brand, J. Chemical vapor deposition of boron carbide. Mater. Sci. Eng. B 2001, 79, 191–202. [Google Scholar] [CrossRef]
- Thevenot, F. Boron carbide—A comprehensive review. J. Eur. Ceram. Soc. 1990, 6, 205–225. [Google Scholar] [CrossRef]
- Tu, R.; Hu, X.; Li, J.; Yang, M.; Li, Q.; Shi, J.; Li, H.; Ohmori, H.; Goto, T.; Zhang, S. Fabrication of (a-nc) boron carbide thin films via chemical vapor deposition using ortho-carborane. J. Asian Ceram. Soc. 2020, 8, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Takeda, M.; Yokoyama, K.; Miura, T.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K. Thermoelectric properties of bo-ron-carbide thin film and thin film based thermoelectric device fabricated by intense-pulsed ion beam evaporation. Sci. Technol. Adv. Mater. 2005, 6, 181. [Google Scholar] [CrossRef] [Green Version]
- Nordell, B.J.; Nguyen, T.D.; Keck, C.L.; Dhungana, S.; Caruso, A.N.; Lanford, W.A.; Gaskins, J.T.; Hopkins, P.E.; Merrill, D.R.; Johnson, D.C.; et al. Conquering the low-k death curve: Insulating boron carbide dielectrics with superior mechanical properties. Adv. Electron. Mater. 2016, 2, 1600073. [Google Scholar] [CrossRef]
- Annen, A.; Saß, M.; Beckmann, R.; Von Keudell, A.; Jacob, W. Structure of plasma-deposited amorphous hydrogenated bo-ron-carbon thin films. Thin Solid Films 1998, 312, 147–155. [Google Scholar] [CrossRef]
- Oliveira, J.; Conde, O. Deposition of boron carbide by laser CVD: A comparison with thermodynamic predictions. Thin Solid Films 1997, 307, 29–37. [Google Scholar] [CrossRef]
- Sun, J.; Ling, H.; Pan, W.; Xu, N.; Ying, Z.; Shen, W.; Wu, J. Chemical structure and micro-mechanical properties of ultra-thin films of boron carbide prepared by pulsed-laser deposition. Tribol. Lett. 2004, 17, 99–104. [Google Scholar] [CrossRef]
- Suematsu, H.; Kitajima, K.; Suzuki, T.; Jiang, W.; Yatsui, K.; Kurashima, K.; Bando, Y. Preparation of polycrystalline boron carbide thin films at room temperature by pulsed ion-beam evaporation. Appl. Phys. Lett. 2002, 80, 1153–1155. [Google Scholar] [CrossRef]
- Lee, K.; Lee, J.; Park, M.; Kim, J.; Lee, C.; Kim, C. Preparation of boron carbide thin films for HDD protecting layer. J. Magn. Magn. Mater. 2004, 272, 2197–2199. [Google Scholar] [CrossRef]
- Lousa, A.; Martínez, E.; Esteve, J.; Pascual, E. Effect of ion bombardment on the properties of B4C thin films deposited by RF sputtering. Thin Solid Films 1999, 355, 210–213. [Google Scholar] [CrossRef]
- Guruz, M.; Dravid, V.; Chung, Y. Synthesis and characterization of single and multilayer boron nitride and boron carbide thin films grown by magnetron sputtering of boron carbide. Thin Solid Films 2002, 414, 129–135. [Google Scholar] [CrossRef]
- Nordell, B.J.; Karki, S.; Nguyen, T.D.; Rulis, P.; Caruso, A.N.; Purohit, S.S.; Li, H.; King, S.W.; Dutta, D.; Gidley, D.W.; et al. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide. J. Appl. Phys. 2015, 118, 035703. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xie, Y.; Tang, K.; Wang, C.; Yan, C. Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage. Angew. Chem. Int. Ed. 2018, 57, 11569–11573. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Huang, J.; Yu, H.; Yang, W.; Wang, L.; Pan, Z.; Wang, L. Thermal stability of hydrogenated diamond films in nitrogen am-bience studied by reflection electron energy spectroscopy and X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2016, 388, 565–570. [Google Scholar] [CrossRef]
- Shindo, D.; Sato, H.; Liedl, G.L. Determination of atomic hydrogen in hydrocarbons by means of the reflected electron energy loss spectroscopy and the X-ray photoelectron spectroscopy. J. Phys. Conf. Ser. 2016, 012005. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, X.; Singh, D.J.; Stern, R.A.; Wu, J.; Petitgirard, S.; Bina, C.R.; Jacobsen, S.D. Boron–oxygen complex yields n-type surface layer in semiconducting diamond. Proc. Natl. Acad. Sci. USA 2019, 116, 7703–7711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laidani, N.; Anderle, M.; Canteri, R.; Elia, L.; Luches, A.; Martino, M.; Micheli, V.; Speranza, M. Structural and compositional study of B–C–N films produced by laser ablation of B4C targets in N2 atmosphere. Appl. Surf. Sci. 2000, 157, 135–144. [Google Scholar] [CrossRef]
- Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W.R.; Shaffer, M.S.P.; Windle, A.H.; Friend, R.H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121. [Google Scholar] [CrossRef]
- Chowdhury, F.A.; Hossain, M.A.; Uchida, K.; Tamura, T.; Sugawa, K.; Mochida, T.; Otsuki, J.; Mohiuddin, T.; Boby, M.A.; Alam, M.S. Gra-phene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization. AIP Adv. 2015, 5, 107228. [Google Scholar] [CrossRef] [Green Version]
- Matsoso, B.J.; Ranganathan, K.; Mutuma, B.K.; Lerotholi, T.; Jones, G.; Coville, N.J. Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia. New J. Chem. 2017, 41, 9497–9504. [Google Scholar] [CrossRef]
- Castillo, H.; Restrepo-Parra, E.; Velez, J.; De La Cruz, W. Substrate temperature influence on boron carbide coatings grown by the PLD technique. Surf. Coat. Technol. 2011, 205, 3607–3612. [Google Scholar] [CrossRef]
- Frenklach, M.; Spear, K.E. Growth mechanism of vapor-deposited diamond. J. Mater. Res. 1988, 3, 133–140. [Google Scholar] [CrossRef]
- Richter, F.; Herrmann, M.; Molnar, F.; Chudoba, T.; Schwarzer, N.; Keunecke, M.; Bewilogua, K.; Zhang, X.; Boyen, H.-G.; Ziemann, P. Substrate influence in Young’s modulus determination of thin films by indentation methods: Cubic boron nitride as an example. Surf. Coat. Technol. 2006, 201, 3577–3587. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Cheng, L.; Yang, W.; Xu, Y. Effect of deposition temperature on boron-doped carbon coatings deposited from a BCl3–C3H6–H2 mixture using low pressure chemical vapor deposition. Appl. Surf. Sci. 2009, 255, 8761–8768. [Google Scholar] [CrossRef]
- Prakash, A.; Sundaram, K.B. Studies on electrical properties of rf sputtered deposited boron carbon nitride thin films. ECS J. Solid State Sci. Technol. 2015, 4, N25–N29. [Google Scholar] [CrossRef]
- Shamiryan, D.; Abell, T.; Iacopi, F.; Maex, K. Low-k dielectric materials. Mater. Today 2004, 7, 34–39. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Wu, Z.-C.; Wu, W.-H.; Chen, M.-C.; Ko, C.-C.; Chen, H.-P.; Jang, S.-M.; Yu, C.-H.; Liang, M.-S. Physical and barrier properties of plasma enhanced chemical vapor deposition α-SiC: N: H films. Jpn. J. Appl. Phys. 2003, 42, 4489. [Google Scholar] [CrossRef]
- Alimov, V.K.; Bogomolov, D.; Churaeva, M.; Gorodetsky, A.; Kanashenko, S.; Kanaev, A.; Rybakov, S.; Sharapov, V.M.; Zakharov, A.; Zalavutdinov, R.; et al. Characterization of a-B/C: H films deposited from different boron containing precursors. J. Nucl. Mater. 1992, 196, 670–675. [Google Scholar] [CrossRef]
- Lee, S.; Mazurowski, J.; Ramseyer, G.; Dowben, P.A. Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes. J. Appl. Phys. 1992, 72, 4925–4933. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.; Emin, D. Conduction mechanism in boron carbide. Phys. Rev. B 1984, 29, 4582–4587. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (B) 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Casiraghi, C.; Ferrari, A.C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 2005, 72, 085401. [Google Scholar] [CrossRef] [Green Version]
- Tong, G.B.; Aspanut, Z.; Muhamad, M.R.; Rahman, S.A. Optical properties and crystallinity of hydrogenated nanocrystalline sili-con (nc-Si: H) thin films deposited by rf-PECVD. Vacuum 2012, 86, 1195–1202. [Google Scholar] [CrossRef]
- Basa, D.; Abbate, G.; Ambrosone, G.; Coscia, U.; Marino, A. Spectroscopic ellipsometry study of hydrogenated amorphous silicon carbon alloy films deposited by plasma enhanced chemical vapor deposition. J. Appl. Phys. 2010, 107, 023502. [Google Scholar] [CrossRef]
Deposition Temperature | Optical Bandgap |
---|---|
RT | 2.25 |
100 °C | 2.4 |
200 °C | 2.49 |
300 °C | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nehate, S.D.; Saikumar, A.K.; Sundaram, K.B. Influence of Substrate Temperature on Electrical and Optical Properties of Hydrogenated Boron Carbide Thin Films Deposited by RF Sputtering. Coatings 2021, 11, 196. https://doi.org/10.3390/coatings11020196
Nehate SD, Saikumar AK, Sundaram KB. Influence of Substrate Temperature on Electrical and Optical Properties of Hydrogenated Boron Carbide Thin Films Deposited by RF Sputtering. Coatings. 2021; 11(2):196. https://doi.org/10.3390/coatings11020196
Chicago/Turabian StyleNehate, Shraddha Dhanraj, Ashwin Kumar Saikumar, and Kalpathy B. Sundaram. 2021. "Influence of Substrate Temperature on Electrical and Optical Properties of Hydrogenated Boron Carbide Thin Films Deposited by RF Sputtering" Coatings 11, no. 2: 196. https://doi.org/10.3390/coatings11020196
APA StyleNehate, S. D., Saikumar, A. K., & Sundaram, K. B. (2021). Influence of Substrate Temperature on Electrical and Optical Properties of Hydrogenated Boron Carbide Thin Films Deposited by RF Sputtering. Coatings, 11(2), 196. https://doi.org/10.3390/coatings11020196