Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for met-al/oxide/metal nanodevices. Nat. Nanotech. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-W.; Ryu, S.-W.; Kim, C.-J.; Kim, S.; Im, M.; Choi, S.-J.; Kim, J.S.; Kim, K.H.; Lee, G.S.; Oh, J.S.; et al. Partially Depleted SONOS FinFET for Unified RAM (URAM)—Unified Function for High-Speed 1T DRAM and Nonvolatile Memory. IEEE Electron Device Lett. 2008, 29, 781–783. [Google Scholar] [CrossRef]
- Kim, S.-J.; Park, Y.-S.; Lyu, S.-H.; Lee, J.-S. Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers. Appl. Phys. Lett. 2010, 96, 33302. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.; Kim, T.; Park, J.J. Mimicking Synaptic Behaviors with Cross-Point Structured TiOx/TiOy-Based Filamentary RRAM for Neuromorphic Applications. J. Electr. Eng. Technol. 2019, 14, 869–875. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.; Ma, X.; Gao, H.; Wang, B. Effect of nitrogen-accommodation ability of electrodes in SiNx-based resistive switching devices. Appl. Phys. Lett. 2017, 111, 233510. [Google Scholar] [CrossRef]
- Saifeddine, C.; Karim, Z.; Lotfi, B.; Atef, K. Microstructure Characterization of an Aluminium Alloy Processed by Milling Followed by Spark Plasma Sintering. Cryst. Res. Technol. 2018, 53, 1700137. [Google Scholar]
- Kim, S.; Kim, H.; Jung, S.; Kim, M.-H.; Lee, S.-H.; Cho, S.; Park, B.-G. Tuning resistive switching parameters in Si3N4-based RRAM for three-dimensional vertical resistive memory applications. J. Alloys Compd. 2016, 663, 419–423. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.C.; Zeng, F.; Pan, F. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device. Appl. Phys. Lett. 2010, 97, 083502. [Google Scholar] [CrossRef]
- Kim, H.-D.; An, H.-M.; Kim, K.C.; Seo, Y.; Nam, K.-H.; Chung, H.-B.; Lee, E.B.; Kim, T.G. Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells. Semicond. Sci. Technol. 2010, 25, 065002. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-D.; Yun, M.J.; Kim, T.G. Self-selection bipolar resistive switching phenomena observed in NbON/NbN bilayer for cross-bar array memory applications. Appl. Phys. Lett. 2014, 105, 213510. [Google Scholar] [CrossRef]
- Zheng, Q.; Mei, A.B.; Tuteja, M.; SanGiovanni, D.G.; Hultman, L.; Petrov, I.; Greene, J.E.; Cahill, D.G. Phonon and electron contributions to the thermal conductivity of VNx epitaxial layers. Phys. Rev. Mater. 2017, 1, 065002. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Chand, U.; Siang, L.W.; Tseng, T.-Y. ZrN-Based Flexible Resistive Switching Memory. IEEE Electron Device Lett. 2020, 41, 705. [Google Scholar] [CrossRef]
- Čyvienė, J.; Dudonis, J. Zr, ZrN and Zr/Al Thin Films Deposition Using Arc Evaporation and Annealing. Acta Phys. Pol. A 2008, 114, 769–777. [Google Scholar] [CrossRef]
- Kim, H.-D.; An, H.-M.; Sung, Y.-M.; Im, H.; Kim, T.G. Bipolar Resistive-Switching Phenomena and Resistive-Switching Mechanisms Observed in Zirconium Nitride-Based Resistive-Switching Memory Cells. IEEE Trans. Device Mater. Reliab. 2013, 13, 252–257. [Google Scholar] [CrossRef]
- Chiu, F.-C. A Review on Conduction Mechanisms in Dielectric Films. Adv. Mater. Sci. Eng. 2014, 2014, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.W.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Nath, R.; Perlman, M. Effect of crystallinity on charge storage in polypropylene and polyethylene. IEEE Trans. Electr. Insul. 1989, 24, 409–412. [Google Scholar] [CrossRef]
- Boukezzi, L.; Boubakeur, A.; Lallouani, M. Effect of artificial thermal aging on the crystallinity of XLPE insulation cables: X-ray study. In Proceedings of the 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, Vancouver, BC, Canada, 14–17 October 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 65–68. [Google Scholar]
- Oh, S.-I.; Rani, J.R.; Hong, S.-M.; Jang, J.-H. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid. Nanoscale 2017, 9, 15314–15322. [Google Scholar] [CrossRef]
- Bang, S.; Kim, M.-H.; Kim, T.-H.; Lee, D.K.; Kim, S.; Cho, S.; Park, B.-G. Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid-State Electron. 2018, 150, 60–65. [Google Scholar] [CrossRef]
- Kim, H.-D.; Kim, S.; Yun, M.J. Self-rectifying resistive switching behavior observed in Al2O3-based resistive switching memory devices with p-AlGaN semiconductor bottom electrode. J. Alloys Compd. 2018, 742, 822–827. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; Fang, Z.; Wang, X.; Tang, Y.; Sohn, J.; Wong, H.-S.P.; Wong, S.S.; Lo, G.-Q. All-Metal-Nitride RRAM Devices. IEEE Electron Device Lett. 2014, 36, 29–31. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, C.-C.; Wang, J.-C. Nonlinear resistive switching features of rapid-thermal-annealed aluminum nitride dielectrics with modified charge trapping behaviors. Microelectron. Eng. 2019, 216, 111033. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Bae, D.; Kim, S.; Kim, H.-D. Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings 2021, 11, 197. https://doi.org/10.3390/coatings11020197
Jung J, Bae D, Kim S, Kim H-D. Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings. 2021; 11(2):197. https://doi.org/10.3390/coatings11020197
Chicago/Turabian StyleJung, Jinsu, Dongjoo Bae, Sungho Kim, and Hee-Dong Kim. 2021. "Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method" Coatings 11, no. 2: 197. https://doi.org/10.3390/coatings11020197
APA StyleJung, J., Bae, D., Kim, S., & Kim, H. -D. (2021). Reduced Operation Current of Oxygen-Doped ZrN Based Resistive Switching Memory Devices Fabricated by the Radio Frequency Sputtering Method. Coatings, 11(2), 197. https://doi.org/10.3390/coatings11020197