Homogenization of Maritime Pine Wood Color by Alkaline Hydrogen Peroxide Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.1.1. Wood Samples
2.1.2. Chemicals
2.2. Hydrogen Peroxyde Treatment
2.3. Hydrogen Peroxide Concentration Monitoring
2.4. Attenuated Total Reflectance Spectroscopy (ATR)
2.5. Soxhlet Extraction
2.6. Colorimetric Analyses
2.7. UV Irradiation Ageing
3. Results and Discussion
3.1. Modification of Wood Color by Hydrogen Peroxide Treatment
3.1.1. Effect on Wood Extractives
3.1.2. Color Changes
- Extractives solubilization and modification: extractives have a high impact on wood color, especially heartwood’s one and the redness (a* parameter) is correlated with these secondary metabolites.
- Chemical modifications of unextractable wood chromophores (lignin and high molecular weight compounds formed from extractives): As mentioned previously, coniferaldehyde units and quinones have a major influence on wood color even if they are present in a low amount.
- Perhydroxyl anions can reacts with these structures [27,37]: Coniferaldehyde units are subjected to addition in α position that lead to an oxirane formation after rearrangement. After a final HOO- adding, methanoate anion as well as vanillin-type derivative are formed as shown in Figure 4a. The addition of HOO- leads to ring-opening reactions for orthoquinone derivatives and to ring-degradation for para-quinone units (Figure 4c). Finally, colorless compounds called hydroquinones can be formed (Figure 4b) [38]. As determined in Forsskahl et al.’s study [39], methoxy-p-benzoquinone (λmax = 355 nm) is transformed into methoxy-p-benzohydroquinone ((λmax = 290 nm).
3.2. Influence of NaOH Concentration Variation and Treatment Duration/H2O2 Consumption
- L* parameter (Figure 6a): there is no significative difference between the experiments for heartwood. For sapwood on the other hand, L* values decrease with the increase of NaOH concentration.
- a* parameter (Figure 6b): For heartwood as for sapwood, all values decrease compared to untreated powders but with no significative influence of NaOH concentration. The lowest difference is obtained for 1%w.
3.3. Influence of NaOH Substitution by Magnesium Hydroxide
- L* values increase when NaOH is partially replaced by Mg(OH)2. Nevertheless, there is a limit ratio beyond which a reversal trend is observed (0.5% NaOH/0.5% Mg(OH)2 for heartwood, 0.25% NaOH/0.75% Mg(OH)2 for sapwood). ΔL* values tend to increase with the substitution rate.
- For a* parameter, a decrease is observed until the ratio 0.5% NaOH/0.5% Mg(OH)2, then values increase as for the gap between heartwood and sapwood. This trend may be easily explained by the difference of reactivity between the two alkalis. As mentioned before, the low solubility of Mg(OH)2 in water allows a gradual release of hydroxide anion that will have an effect on the solution pH (value around 8–9 vs. 11–12 for NaOH solutions) [48]. Mg(OH)2 solubilizes in water to form first Mg(OH)+ (pKs Mg(OH)2 = 11.2) and then Mg2+ and OH- (pKa (Mg2+/Mg(OH)+) = 11.4 while pKa (Na+/NaOH) = 14.8 ) [49]. Due to the lower pKa of magnesium hydroxide, heartwood phenolic compounds should be less deprotonated and are still present. Consequently, a* values are higher when sodium hydroxide is fully substituted by magnesium hydroxide. As those extractives are not available in sapwood, a* values are less affected.
- Finally b* values decrease with substitution rate and confirm that using Mg(OH)2 could limit wood yellowing by preventing secondary reactions with hydroxide anions.
3.4. UV Irradiation Ageing and Color Evolution
- Quinones are produced from hydroquinones formed from lignin during H2O2 treatment [40].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosa, R.; Soares, P.; Tomé, M. Evaluating the Economic Potential of Uneven-aged Maritime Pine Forests. Ecol. Econ. 2018, 143, 210–217. [Google Scholar] [CrossRef]
- Gérard, J.; Guibal, D.; Paradis, S.; Vernay, M.; Beauchêne, J.; Brancheriau, L.; Châlon, I.; Daigremont, C.; Détienne, P.; Fouquet, D.; et al. Pin Maritime. Tropix 7 (Version 7.5.1) [Computer Software]. 2011. Available online: https://search.datacite.org/works/10.18167/74726F706978 (accessed on 5 May 2021).
- Rydholm, S.A. Pulping Processes; Interscience Publishers: Geneva, Switzerland, 1965. [Google Scholar]
- Loras, V. Bleaching of mechanical and chemimechanical pulp. Sven. Papp. Nord. Cellul. 1981, 84, 36. [Google Scholar]
- Pew, J.C.; Connors, W.J. Color of coniferous lignin. TAPPI J. 1971, 54, 245–247. [Google Scholar]
- Adler, E. Carbonyl groups in lignin. I. Acta Chem. Scand. 1959, 13, 75–96. [Google Scholar] [CrossRef] [Green Version]
- Adler, E. Recent studies on the structural elements of lignin. Pap. Puu. 1961, 43, 634–643. [Google Scholar]
- Hon, D.N.-S.; Glasser, W. On possible chromophoric structures in wood and pulps: A survey of the present state of knowledge. Polym. Plast. Technol. Eng. 1979, 12, 159–179. [Google Scholar] [CrossRef]
- Imsgard, F.; Falkehag, S.I.; Kringstad, K.P. On Possible Chromophoric Structures in Spruce Wood; Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 1971. [Google Scholar]
- Kampe, A.; Magel, E. New Insights into Heartwood and Heartwood Formation. In Cellular Aspects of Wood, Formation; Fromm, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 71–95. [Google Scholar]
- Barton, G.M. Significance of western hemlock phenolic extractives in pulping and lumber. For. Prod. J. 1968, 18, 76–80. [Google Scholar]
- Hrutfiord, B.F.; Luthi, R.; Hanover, K.F. Color Formation in Western Hemlock. J. Wood Chem. Technol. 1985, 5, 451–460. [Google Scholar] [CrossRef]
- Burtin, P.; Jay-Allemand, C.; Charpentier, J.-P.; Janin, G. Natural wood colouring process in Juglans sp. (J. nigra, J. regia and hybrid J. nigra 23 ×J. regia) depends on native phenolic compounds accumulated in the transition zone between sapwood and heartwood. Trees 1998, 12, 258–264. [Google Scholar] [CrossRef]
- Mayer, I.; Koch, G.; Puls, J. Topochemical investigations of wood extractives and their influence on colour changes in American black cherry (Prunus serotina Borkh). Holzforschung 2006, 60, 589–594. [Google Scholar] [CrossRef]
- Dellus, V.; Scalbert, A.; Janin, G. Polyphenols and Colour of Douglas Fir Heartwood. Wood Res. Technol. 1997, 51, 291. [Google Scholar] [CrossRef]
- Dellus, V.; Mila, I.; Scalbert, A.; Chimle, L.D.; Inra, B.; Thiverval-Grlgnon, N.A.P. Douglas-Fir polyphenols and heartwood formation. Phytochemistry 1997, 45, 1573–1578. [Google Scholar] [CrossRef]
- Johansson, C.; Beatson, R.; Saddler, J. Fate and influence of western red cedar extractives in mechanical pulping. Wood Sci. Technol. 2000, 34, 389–401. [Google Scholar] [CrossRef]
- Johansson, C.I.; Saddler, J.N.; Beatson, R.P. Characterization of the Polyphenolics Related to the Colour of Western Red Cedar (Thuja plicata Donn) heartwood. Holzforschung 2005, 54, 246–254. [Google Scholar] [CrossRef]
- Gierlinger, N.; Jacques, D.; Grabner, M.; Wimmer, R.; Schwanninger, M.; Rozenberg, P.; Pâques, L. Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees Struct. Funct. 2004, 18, 102–108. [Google Scholar] [CrossRef]
- Pâques, L.E.; del García-Casas, M.C.; Charpentier, J.-P. Distribution of heartwood extractives in hybrid larches and in their related European and Japanese larch parents: Relationship with wood colour parameters. Eur. J. For. Res. 2013, 132, 61–69. [Google Scholar] [CrossRef]
- Bajpai, P. Environmentally Benign Approaches for Pulp Bleaching; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Gonzalez, P.; Zaror, C. Effect of process modifications on AOX emissions from kraft pulp bleaching, using Chilean pine and eucalyptus. J. Clean. Prod. 2000, 8, 233–241. [Google Scholar] [CrossRef]
- Torrades, F.; Riva, M.C.; Torres, S.; Hortal, J.A.G.; Domènech, X.; Peral, J.; Pèrez, M. Detection and elimination of the constant error component and the interactive matrix interference in the determination of adsorbable organic halogen (AOX) in bleached kraft paper pulp mill effluents. Anal. Chim. Acta 1996, 333, 139–146. [Google Scholar] [CrossRef]
- Yetis, U.; Selcuk, A.; Gokcay, C.F. Reducing chlorinated organics, AOX, in the bleachery effluents of a Turkish pulp and paper plant. Water Sci. Technol. 1996, 34, 97–104. [Google Scholar] [CrossRef]
- Deshmukh, N.S.; Lapsiya, K.L.; Savant, D.V.; Chiplonkar, S.A.; Yeole, T.Y.; Dhakephalkar, P.K.; Ranade, D.R. Upflow anaerobic filter for the degradation of adsorbable organic halides (AOX) from bleach composite wastewater of pulp and paper industry. Chemosphere 2009, 75, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.M. The bleaching of eastern spruce groundwood with alkaline peroxide. I. Reaction kinetics. TAPPI J. 1957, 40, 65–75. [Google Scholar]
- Gellerstedt, G.; Agnemo, R. The reactions of lignin with alkaline hydrogen peroxide. Part III. The oxidation of conjugated carbonyl structures. Acta Chem. Scand. B 1980, 4, 34. [Google Scholar]
- Colodette, J.L. Factors Affecting Hydrogen Peroxide Stability in the Brightening of Mechanical and Chemimechanical Pulps. Ph.D. Thesis, State University of New York College of Environmental Science and Forestry, New York, NY, USA, 1987. [Google Scholar]
- Qiu, Z.; Ni, Y.; Yang, S. Using DTPA to decrease manganese-induced peroxide decomposition. J. Wood Chem. Technol. 2003, 23, 1–11. [Google Scholar] [CrossRef]
- Mononen, K.; Jääskeläinen, A.-S.; Alvila, L.; Pakkanen, T.T.; Vuorinen, T. Chemical changes in silver birch (Betula pendula Roth) wood caused by hydrogen peroxide bleaching and monitored by color measurement (CIELab) and UV-Vis, FTIR and UVRR spectroscopy. Holzforschung 2005, 59, 381–388. [Google Scholar] [CrossRef]
- Evans, P.D.; Palmer, G.; Chowdhury, M. Bleaching treatments for blue-stained lodgepole pine affected by the mountain pine beetle Dendroctonus ponderosae. Holz Roh- Werkst. 2007, 65, 485–486. [Google Scholar] [CrossRef]
- Technical Association of the Pulp and Paper Industry: TAPPI T257 cm-02. Sampling and Preparing Wood for Analysis. TAPPI Tests Methods, Atlanta. 2002. Available online: https://www.tappi.org/content/sarg/t257.pdf (accessed on 5 May 2021).
- Baga, A.N.; Johnson, G.R.A.; Nazhat, N.B.; Saadalla-Nazhat, R.A. A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution. Anal. Chim. Acta 1988, 204, 349–353. [Google Scholar] [CrossRef]
- Ekman, R.; Holmbom, B. The wood extractives in alkaline peroxide bleaching of groundwood from Norway spruce. Nord. Pulp Pap. Res. J. 1989, 4, 188–191. [Google Scholar] [CrossRef]
- Holmbom, B.; Ekman, R.; Sjöholm, R.; Eckerman, C.; Thornton, J. Chemical changes in peroxide bleaching of mechanical pulps. Das Pap. (Darmstadt) 1991, 45, V16–V22. [Google Scholar]
- Miao, Q.; Zhong, G.; Chen, L.; Huang, L. Influence of Alkaline Treatment and Alkaline Peroxide Bleaching of Aspen Chemithermomechanical Pulp on Dissolved and Colloidal Substances. Ind. Eng. Chem. Res. 2014, 53, 2544–2548. [Google Scholar] [CrossRef]
- Castellan, A.; Grelier, S. Color and Color Reversion of Cellulosic and Lignocellulosic Fibers. In Lignocellulosic Fibers and Wood Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 531–551. [Google Scholar]
- Gellerstedt, G.; Zhang, L. Formation of Leucochromophores during High-Yield Pulping and H2O2 Bleaching. Photochem. Lignocellul. Mater. 1993, 531, 129–146. [Google Scholar]
- Forsskåhl, I.; Gustafsson, J.; Nybergh, A.; Vallén, S.; Enzell, C.R. The Photochemical Discolouration of Methoxy-p-benzoquinone in Solution. Acta Chem. Scand. 1981, 35, 389–394. [Google Scholar] [CrossRef]
- Paulsson, M.; Parkås, J. Review: Light-Induced Yellowing of Lignocellulosic Pulps – Mechanisms and Preventive Methods. Bioresources 2012, 7, 5995–6040. [Google Scholar] [CrossRef] [Green Version]
- Giust, W.; McLellan, F.; Whiting, P. Alkali darkening and its similarities to thermal reversion. J. Pulp Pap. Sci. 1991, 17, J73–J79. [Google Scholar]
- He, Z.; Ni, Y.; Zhang, E. Alkaline Darkening and Its Relationship to Peroxide Bleaching of Mechanical Pulp. J. Wood Chem. Technol. 2005, 24, 1–12. [Google Scholar] [CrossRef]
- Dietz, T.; Schmidt, K.; Suss, H.U. Aspects of Optimization of Mechanical Pulp Bleaching—A Comparison of Alternative Alkali Sources for Hydrogen Peroxide Bleaching. Int. Pap. 2008, 12, 39. [Google Scholar]
- Hietanen, T.M.; Österberg, M.; Backfolk, K.A. Effects on Pulp Properties of Magnesium Hydroxide in Peroxide Bleaching. Bioresources 2013, 8, 2337–2350. [Google Scholar] [CrossRef] [Green Version]
- Tamper, J.; Hietanen, T.; Manner, H. Alternative alkalis in peroxide bleaching of mechanical pulp. In Proceedings of the International Mechanical Pulping Conference, Minneapolis, MN, USA, 6–9 May 2007. [Google Scholar]
- Ni, Y.; He, Z. Review Using magnesium hydroxide as the alkali source for peroxide bleaching of mechanical pulps-process chemistry and industrial implementation. Nord. Pulp Pap. Res. J. 2010, 25, 170–177. [Google Scholar] [CrossRef]
- Suess, H.U.; Del Grosso, M.; Schmidt, K.; Hopf, B. Options for Bleaching Mechanical Pulp with Lower COD Load. In Proceedings of the 55th Appita Annual Conference, Hobart, Australia, 30 April–2 May 2001. [Google Scholar]
- Zeinaly, F.; Shakhes, J.; Firozabadi, M.D.; Shakeri, A. Hydrogen peroxide bleaching of CMP pulp using magnesium hydroxide. Bioresources 2009, 4, 1409–1416. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; Chemical Rubber Company, Ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Browne, F.L. The penetration of light into wood. For. Prod J. 1957, 7, 308–314. [Google Scholar]
- Kataoka, Y.; Kiguchi, M. Depth profiling of photo-induced degradation in wood by FT-IR microspectroscopy. J. Wood Sci. 2001, 47, 325–327. [Google Scholar] [CrossRef]
- Tolvaj, L.; Faix, O. Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE L*a*b* Color Measurements. 1. Effect of UV Light. Holzforschung 1995, 49, 397–404. [Google Scholar] [CrossRef]
- Castellan, A.; Nourmamode, A.; Colombo, N.; Jaeger, C.; Noutary, C.; Zhu, J.H. Discoloration of phenolic carbonyl-free lignin model molecules, milled wood lignin (MWL) and peroxide MWL in the solid state; Approach to the mechanism of protection of high-yield pulps against photoyellowing by reducing agents using 3, 4-dimethoxy-α-(2’-methoxyphenoxy) acetophenone as a lignin model. Australian Pulp and Paper Technical Association procedings. Wood Pulp. Chem. 1991, 10, 151–158. [Google Scholar]
- Parkås, J.; Paulsson, M.; Li, S.; Lundquist, K.; Westermark, U. Photoyellowing behavior of non-phenolic lignin models representative of end groups and β-ether structures. Nord. Pulp Pap. Res. J. 2004, 19, 146–154. [Google Scholar] [CrossRef]
- Ruffin, B.; Castellan, A. Photoyellowing of peroxide-bleached lignin-rich pulps: A photochemical study on stilbene-hydroquinone chromophores issued from β-5 units of lignin during refining and (or) bleaching. Can. J. Chem. 2000, 78, 73–83. [Google Scholar] [CrossRef]
- Lin, S.Y.; Kringstad, K.P. Some reactions of photoinduced discoloration of lignin. Nor. Skogind. 1971, 25, 252. [Google Scholar]
- Ghanmi, M.; El Abid, A.; Chaouch, A.; Aafi, A.; Aberchane, M.; El Alami, A.; Farah, A. Étude du rendement et de la composition de l’essence de térébenthine du Maroc: Cas du Pin maritime (Pinus pinaster) et du Pin d’Alep (Pinus halepensis). Acta Bot. Gallica 2005, 152, 3–10. [Google Scholar] [CrossRef]
- Ghanmi, M.; Satrani, B.; Aafi, A.; Ismail, M.R.; Farah, A.; Chaouch, A. Évaluation de la qualité de la colophane du pin maritime (Pinus pinaster) et du pin d’Alep (Pinus halepensis) du Maroc. Acta Bot. Gallica 2009, 156, 427–435. [Google Scholar] [CrossRef]
- Génova, M.; Caminero, L.; Dochao, J. Resin tapping in Pinus pinaster: Effects on growth and response function to climate. Eur. J. For. Res. 2013, 133, 323–333. [Google Scholar] [CrossRef]
- Jactel, H.; Kleinhentz, M.; Marpeau-Bezard, A.; Marion-Poll, F.; Menassieu, P.; Burban, C. Terpene variations in maritime pine constitutive oleoresin related to host tree selection byDioryctria sylvestrella RATZ. (Lepidoptera: Pyralidae). J. Chem. Ecol. 1996, 22, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
NaOH %w | Untreated (1) | Control (water) (2) | 0.1% (3) | 1% (4) | 1.8% (5) | 10% (6) |
---|---|---|---|---|---|---|
H2O2 concentration | np | np | 15 g·L−1 | 15 g·L−1 | 15 g·L−1 (0.047 mol) | 15 g·L−1 |
NaOH concentration | np | np | 0.96 g·L−1 | 9.6 g·L−1 | 18 g·L−1 (0.047 mol) | 96 g·L−1 |
NaOH %w | Untreated (1) | Control (2) | 0.1% (3) | 1% (4) | 1.8% (5) | 10% (6) |
---|---|---|---|---|---|---|
ΔESw/Hw | 7.5 | 4.9 | 4.5 | 1.2 | 2.2 | 4.1 |
Experiments | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
H2O2 percentage | 4% | 4% | 4% | 4% | 4% |
NaOH percentage | 1% | 0.75% | 0.5% | 0.25% | 0% |
Mg(OH)2 percentage | 0% | 0.25% | 0.5% | 0.75% | 1% |
Experiments | Untreated | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
H2O2 percentage | / | 4% | 4% | 4% | 4% | 4% |
NaOH percentage | / | 1% | 0.75% | 0.5% | 0.25% | 0% |
Mg(OH)2 percentage | / | 0% | 0.25% | 0.5% | 0.75% | 1% |
ΔE Sw/Hw | 6.5 | 1.2 | 2.3 | 1.9 | 4.3 | 2.5 |
Heartwood | |||||
---|---|---|---|---|---|
Untreated | Bleached | ||||
ΔL*d69/d0 | Δa*d69/d0 | Δb*d69/d0 | ΔL*d69/d0 | Δa*d69/d0 | Δb*d69/d0 |
13.5 | 7.1 | 13.9 | 18.7 | 12.8 | 21.3 |
Sapwood | |||||
---|---|---|---|---|---|
Untreated | Bleached | ||||
ΔL*d69/d0 | Δa*d69/d0 | Δb*d69/d0 | ΔL*d69/d0 | Δa*d69/d0 | Δb*d69/d0 |
14.1 | 8.8 | 17.5 | 17.8 | 13.8 | 21.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehats, J.; Castets, L.; Grau, E.; Grelier, S. Homogenization of Maritime Pine Wood Color by Alkaline Hydrogen Peroxide Treatment. Coatings 2021, 11, 839. https://doi.org/10.3390/coatings11070839
Mehats J, Castets L, Grau E, Grelier S. Homogenization of Maritime Pine Wood Color by Alkaline Hydrogen Peroxide Treatment. Coatings. 2021; 11(7):839. https://doi.org/10.3390/coatings11070839
Chicago/Turabian StyleMehats, Jérémy, Laurent Castets, Etienne Grau, and Stéphane Grelier. 2021. "Homogenization of Maritime Pine Wood Color by Alkaline Hydrogen Peroxide Treatment" Coatings 11, no. 7: 839. https://doi.org/10.3390/coatings11070839
APA StyleMehats, J., Castets, L., Grau, E., & Grelier, S. (2021). Homogenization of Maritime Pine Wood Color by Alkaline Hydrogen Peroxide Treatment. Coatings, 11(7), 839. https://doi.org/10.3390/coatings11070839