Application of Ethylene Oxide Gas and Argon Gas Mixture System Method for Scale Deacidification of Cellulose-Based Cultural Heritage Collections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paper Samples
2.2. Conservation Procedure and Characterization Methods
2.2.1. Optimization of Deacidification Conditions
2.2.2. Accelerated Aging Test
2.2.3. Mechanical Strength Test
2.2.4. pH Test
2.2.5. Thermal Gravimetric (TG)
2.2.6. X-ray Diffraction (XRD)
2.2.7. Field Emission Scanning Electron Microscope (FE-SEM)
2.2.8. GC-MS Analysis
2.2.9. Chromatic Values Test
2.3. Application of Large-Scale Deacidification Technology
3. Results and Discussion
3.1. Optimization of Deacidification Conditions
3.2. Effect of pH
3.3. Effect on Mechanical Properties
3.4. The Chromatic Aberration of Paper Samples Treated with EO-Ar
3.5. Characterization of Morphology and Chemical Composition
3.6. Application of Scale Deacidification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Huang, Y.; Zhang, H.; Ye, Z.; Liu, P.; Wang, S.; Zhang, Y.; Tang, Y. Selectively functionalized zeolite NaY composite materials for high-efficiency multiple protection of paper relics. Ind. Eng. Chem. Res. 2020, 59, 11196–11205. [Google Scholar] [CrossRef]
- Bukovský, V. The influence of light on ageing of newsprint paper. Restaurator 2000, 21, 55–76. [Google Scholar] [CrossRef]
- Havermans, J. Effects of air pollutants on the accelerated ageing of cellulose-based materials. Restaurator 1995, 16, 209–233. [Google Scholar] [CrossRef]
- Area, M.C.; Cheradame, H. Paper aging and degradation: Recent findings and research methods. BioResources 2011, 6, 5307–5337. [Google Scholar]
- Bukovsky, V.; Trnková, M. The influence of secondary chromophores on the light induced oxidation of paper part II: The influence of light on groundwood paper. Restaurator 2003, 24, 18–35. [Google Scholar] [CrossRef]
- Chamberlain, D. Anion mediation of aluminium-catalysed degradation of paper. Polym. Degrad. Stabil. 2007, 92, 1417–1420. [Google Scholar] [CrossRef]
- Gehlen, M.H. Approximate solution of the autocatalytic hydrolysis of cellulose. Cellulose 2009, 16, 1069–1073. [Google Scholar] [CrossRef]
- Carter, H.A. The chemistry of paper preservation: Part 1. the aging of paper and conservation techniques. J. Chem. Educ. 1996, 73, 417–425. [Google Scholar] [CrossRef]
- Ahn, K.; Hennniges, U.; Banik, G.; Potthast, A. Is cellulose degradation due to β-elimination processes a threat in mass deacidification of library books? Cellulose 2012, 19, 1149–1159. [Google Scholar] [CrossRef]
- Carter, H.A. The Chemistry of Paper Preservation: Part 2. The yellowing of paper and conservation bleaching. J. Chem. Educ. 1996, 73, 1068–1076. [Google Scholar] [CrossRef]
- Calvini, P. Comments on the article “On the degradation evolution equations of cellulose” by Hongzhi Ding and Zhongdong Wang. Cellulose 2007, 15, 225–228. [Google Scholar] [CrossRef]
- Matisová-Rychlá, L.; Rychlý, J.; Ebringerová, A.; Csomorová, K.; Malovíková, A. Chemiluminescence accompanying the oxidation of hemicelluloses. Polym. Degrad. Stabil. 2008, 93, 1674–1680. [Google Scholar] [CrossRef]
- Lojewski, T.; Miskowiec, P.; Molenda, M.; Lubanska, A.; Lojewska, J. Artificial versus natural ageing of paper. Water role in degradation mechanisms. Appl. Phys. A 2010, 100, 625–633. [Google Scholar] [CrossRef]
- Mihram, D. Paper deacidification: A bibliographic survey. Part II. Restaurator 1986, 7, 2. [Google Scholar] [CrossRef]
- Holik, D.I.H. Book and Paper Preservation; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; Chapter 13. [Google Scholar]
- Baty, J.W.; Maitland, C.L.; Minter, W.; Hubbe, M.A.; Jordan-Mowery, S.K. Deacidification for the conservation and preservation of paper-based works: A review. BioResources 2010, 5, 1955–2023. [Google Scholar] [CrossRef]
- Helmut, B. Aqueous deacidification-with calcium or with magnesium? Restaurator 1998, 19, 1–40. [Google Scholar]
- Baty, J.W.; Sinnott, M.L. The kinetics of the spontaneous, proton-and AlIII-catalysed hydrolysis of 1,5-anhydrocellobiitol models for cellulose depolymerization in paper aging and alkaline pulping, and a benchmark for cellulase efficiency. Can. J. Chem. 2005, 83, 1516–1524. [Google Scholar] [CrossRef]
- Botti, L.; Mantovani, O.; Orrù, M.A.; Ruggiero, D. The effect of sodium and calcium ions in the deacidification of paper: A chemo-physical study using thermal analysis. Restaurator 2006, 27, 9–23. [Google Scholar] [CrossRef]
- Giorgi, R.; Dei, L.; Ceccato, M.; Schettino, C.; Baglioni, P. Nanotechnologies for conservation of cultural heritage: Paper and canvas deacidification. Langmuir 2002, 21, 8198–8203. [Google Scholar] [CrossRef]
- Banik, G. Mass deacidification technology in Germany and its quality control. Restaurator 2005, 26, 63–75. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Smith, R.D.; Zou, X.; Katuscak, S.; Potthast, A.; Ahn, K. Deacidification of acidic books and paper by means of non-aqueous dispersions of alkaline particles: A review focusing on completeness of the reaction. BioResources 2017, 12, 4410–4477. [Google Scholar] [CrossRef] [Green Version]
- Bookkeeper Deacidification. Preservation Technologies. Available online: https://ptlp.com/en/bookkeeper/tools-guide-lines/faq/ (accessed on 28 June 2021).
- Zervos, S.; Alexopoulou, I. Paper conservation methods: A literature review. Cellulose 2015, 22, 2859–2897. [Google Scholar] [CrossRef]
- Pauk, S. The bookkeeper mass deacidification process—some effects on 20th century library material. Abbey Newsletter. 1996, 20, 50–54. [Google Scholar]
- Smith, R.D. Preserving Cellulose Materials through Treatment with Alkylene Oxides. U.S. Patent 3,676,055, 11 July 1972. [Google Scholar]
- Humphrey, B.J. Paper strengthening with gas-phase parylene polymers: Practical considerations. Restaurator 1990, 11, 48–68. [Google Scholar] [CrossRef]
- Hideharu, S. Ethylene oxide gas sterilization of medical devices. Biocontrol Sci. 2017, 22, 1–9. [Google Scholar]
- Muscarella, L.F. Use of Ethylene-oxide gas sterilisation to terminate multidrug-resistant bacterial outbreaks linked to duodenoscopes. RMD Open 2019, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschamp, D. Use of Ethylene oxide in medical and surgical sterilisation. Evaluation of the occupational risk of opacification of the lens. Br. Med. J. 1988, 2, 446–452. [Google Scholar]
- Mendes, G.C.C.; Brandão, T.R.S.; Silva, C.L.M. Ethylene oxide sterilization of medical devices: A review. Am. J. Infect. Control 2007, 35, 574–581. [Google Scholar] [CrossRef]
- BackE, E.A.; Cotton, R.T.; Ellington, G.W. Ethylene oxide as a fumigant for food and other commodities. J. Econ. Entomol. 1930, 23, 226–231. [Google Scholar] [CrossRef]
- Okayama, T.; Gotoh, T.; Oye, R. Degradation Control of Book Paper by Ammonia-ethylene Oxide Treatment. In Proceedings of the 1994 Pulp and Paper Research Conference Proceedings, Tokyo, Japan, 20–24 June 1994; pp. 132–135. [Google Scholar]
- Win, K.R.; Okayama, T. Mass Deacidification Treatments of Acidic Bamboo Paper. Fiber 2012, 68, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Havlínová, B.; Katuščák, S.; Petrovičová, M.; Maková, A.; Brezová, V. A study of mechanical properties of papers exposed to various methods of accelerated ageing. Part I. The effect of heat and humidity on original wood-pulp oapers. J. Cult. Herit. 2009, 10, 222–231. [Google Scholar] [CrossRef]
- Paper and Board—Accelerated Ageing—Part 1: Dry Heat Treatment at 105 Degrees C; ISO 5630-1:1991; ISO: Geneva, Switzerland, 1991.
- Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min); ISO 1924-2-2008; ISO: Geneva, Switzerland, 2008.
- Paper—Determination of Folding Endurance; BS ISO 5626:1993; BS: London, UK, 1994.
- Paper, Board and Pulps—Determination of pH of Aqueous Extracts—Part 1: Cold Extraction; ISO 6588-1:2012; ISO: Geneva, Switzerland, 2012.
- Causin, V.; Marega, C.; Marigo, A.; Casamassima, R.; Peluso, G.; Ripani, L. Forensic differentiation of paper by x-ray diffraction and infrared spectroscopy. Forensic Sci. Int. 2010, 197, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Perez-Rodriguez, J.L.; Espejo, T.; Franquelo, M.L.; Castaing, J.; Walter, P. Characterization of illuminated manuscripts by laboratory-made portable XRD and micro-XRD systems. Anal. Bioanal. Chem. 2009, 395, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Information and Documentation—Paper for Documents—Requirements for Permanence; ISO 9706:1994; ISO: Geneva, Switzerland, 1994.
- Santos, S.M.; Carbajo, J.M.; Quintana, E.; Ibarra, D.; Gomez, N.; Ladero, M.; Eugenio, M.E.; Villar, J.C. Characterization of purifified bacterial cellulose focused on its use on paper restoration. Carbohyd. Polym. 2015, 116, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Cao, L.; Wang, B. Facile cellulose dissolution without heating in [C4mim] [CH3COO]/DMF solvent. Carbohyd. Polym. 2015, 137, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.R.; Alonso, M.; Berhardt, R.J. Alkoxylated Fatty Esters and Derivatives from Natural Oil Metathesis. U.S. Patent 878972B2, 2 January 2014. [Google Scholar]
- Allen, D.R.; Bernhardt, R.J.; Brown, A. Hard Surface Cleaners Based on Compositions Derived from Natural Oil Metathesis. U.S. Patent 057612 B2, 5 April 2016. [Google Scholar]
- Wurm, F.; Nieberle, J.; Frey, H. Double-hydrophilic linear-hyperbranched block copolymers based on poly(ethylene oxide) and poly(glycerol). Macromolecules 2016, 41, 1909–1911. [Google Scholar] [CrossRef]
No. | Samples | Date | pH | Manufacturer or Publisher |
---|---|---|---|---|
Sample 1 | Groundwood printing papers | 1980 | 3.82 | Shaanxi provincial archives bureau, Xi’an, China |
Sample 2 | Ingrain paper | 1950 | 5.57 | Shaanxi provincial archives bureau, Xi’an, China |
Sample 3 | Xuan paper | 2017 | 8.85 | China Xuan Paper Co., Ltd, Jingxian, China |
Sample 4 | Forensic identification of bodily secretions | 1980 | 3.50 | Qunzhong Press, Beijing, China |
Sample 5 | Small dictionary of modern Chinese | 1980 | 5.73 | People’s Education Press, Beijing, China |
Sample 6 | Licheng county annals | 1876 | 8.21 | Yellow River Archives, Zhengzhou, China |
Factors Levels | Pretreatment Humidity (%) | Gas Ratio (EO:Ar) | Temperature (°C) | Time (h) |
---|---|---|---|---|
A | B | C | D | |
1 | 30 | 9:1 | 30 | 2 |
2 | 55 | 7:3 | 40 | 10 |
3 | 80 | 5:5 | 50 | 24 |
The Test Number | Factors | pH | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | 1 | 1 | 1 | 1 | 4.34 |
2 | 1 | 2 | 2 | 2 | 5.12 |
3 | 1 | 3 | 3 | 3 | 3.97 |
4 | 2 | 1 | 2 | 3 | 6.78 |
5 | 2 | 2 | 3 | 1 | 6.23 |
6 | 2 | 3 | 1 | 2 | 5.45 |
7 | 3 | 1 | 3 | 2 | 7.89 |
8 | 3 | 2 | 1 | 3 | 8.03 |
9 | 3 | 3 | 2 | 1 | 6.38 |
K1 | 13.43 | 19.01 | 17.82 | 16.95 | - |
K2 | 18.46 | 19.38 | 18.28 | 18.46 | |
K3 | 22.3 | 15.8 | 18.09 | 18.78 | |
1 | 4.47 | 6.34 | 5.94 | 5.65 | |
2 | 6.15 | 6.46 | 6.09 | 6.15 | |
3 | 7.43 | 5.27 | 6.03 | 6.26 | |
Optimal levels | A3 | B2 | C2 | D3 | |
Rj | 2.96 | 1.19 | 0.15 | 0.61 | |
Primary and secondary order | A > B > D > C |
Sample | Before | After | Variation (After–Before) | ΔE* = (ΔL*2 + Δa*2 + Δb*2)1/2 |
---|---|---|---|---|
Sample 1 | L* = 85.52 ± 0.34 a* = 6.54 ± 0.22 b* = 8.51 ± 0.65 | L* = 85.71 ± 0.42 a* = 6.76 ± 0.18 b* = 9.36 ± 0.78 | ΔL* = +0.19 ± 0.54 Δa* = +0.22 ± 0.28 Δb* = +0.85 ± 1.02 | 0.90 ± 0.46 |
Sample 2 | L* = 75.84 ± 0.45 a* = 6.35 ± 0.32 b* = 28.43 ± 0.78 | L* = 76.16 ± 0.15 a* = 6.18 ± 0.42 b* = 29.32 ± 0.56 | ΔL* = +0.32 ± 0.47 Δa* = −0.17 ± 0.53 Δb* = +0.89 ± 0.96 | 0.96 ± 0.34 |
Sample 3 | L* = 95.78 ± 0.25 a* = 3.08 ± 0.26 b* = 1.5 ± 0.17 | L* = 95.33 ± 0.17 a* = 3.07 ± 0.24 b* = 1.54 ± 0.35 | ΔL* = −0.45 ± 0.30 Δa* = −0.01 ± 0.35 Δb* = +0.04 ± 0.39 | 0.45 ± 0.17 |
Sample 4 | L* = 77.87 ± 0.18 a* = 3.94 ± 0.57 b* = 23.1 ± 0.34 | L* = 78.67 ± 0.11 a* = 4.34 ± 0.68 b* = 23.71 ± 0.46 | ΔL* = +0.8 ± 0.21 Δa* = +0.40 ± 0.89 Δb* = +0.61 ± 0.57 | 1.08 ± 0.29 |
Sample 5 | L* = 72.32 ± 0.72 a* = 3.64 ± 0.55 b* = 22.8 ± 0.71 | L* = 72.77 ± 0.81 a* = 3.50 ± 0.32 b* = 23.35 ± 0.63 | ΔL* = +0.45 ± 1.08 Δa* = −0.14 ± 0.64 Δb* = +0.55 ± 0.95 | 0.72 ± 0.41 |
Sample 6 | L* = 79.26 ± 0.24 a* = 4.03 ± 0.76 b* = 21.99 ± 0.78 | L* = 78.91 ± 0.32 a* = 4.44 ± 0.45 b* = 22.58 ± 0.34 | ΔL* = −0.35 ± 0.40 Δa* = +0.41 ± 0.88 Δb* = +0.59 ± 0.85 | 0.80 ± 0.33 |
Number | Retention Time | Component | Peak Area/% | Peak Height/% | Mass Peak | Similarity/% |
---|---|---|---|---|---|---|
1 | 2.517 | Acetic acid | 0.76 | 0.68 | 327 | 76 |
2 | 3.508 | Propanoic acid | 1.45 | 0.71 | 139 | 87 |
3 | 7.776 | Octanoic Acid | 0.31 | 0.27 | 260 | 88 |
4 | 9.227 | Nonanoic acid | 0.51 | 0.45 | 319 | 94 |
Number | Retention Time | Component | Peak Area/% | Peak Height/% | Mass Peak | Similarity/% |
---|---|---|---|---|---|---|
1 | 1.560 | Ethylene glycol, monoacetate | 6.77 | 9.06 | 273 | 98 |
2 | 3.470 | 2-(2-Hydroxyethoxy)ethyl acetate | 5.98 | 6.72 | 339 | 97 |
3 | 4.795 | Triethylene glycol | 12.92 | 7.60 | 349 | 98 |
4 | 5.515 | Diethylene glycol, diacetate | 0.15 | 0.29 | 282 | 95 |
5 | 6.930 | 2-[2-[2-(2-Hydroxyethoxy)ethoxy]ethoxy]ethyl acetate | 0.96 | 0.65 | 257 | 90 |
6 | 12.175 | Tetradecanoic acid, 2-Hydroxyethyl ester | 0.83 | 0.41 | 303 | 87 |
7 | 16.240 | Palmitic acid, 2-Hydroxyethyl ester | 1.98 | 0.95 | 347 | 93 |
8 | 17.801 | Polyethylene glycol | 0.44 | 0.46 | 367 | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Jia, Z.; Zhou, Y.; Wang, Y.; Zhao, G.; Chao, X.; Xing, H.; Li, Y. Application of Ethylene Oxide Gas and Argon Gas Mixture System Method for Scale Deacidification of Cellulose-Based Cultural Heritage Collections. Coatings 2021, 11, 973. https://doi.org/10.3390/coatings11080973
Qi Y, Jia Z, Zhou Y, Wang Y, Zhao G, Chao X, Xing H, Li Y. Application of Ethylene Oxide Gas and Argon Gas Mixture System Method for Scale Deacidification of Cellulose-Based Cultural Heritage Collections. Coatings. 2021; 11(8):973. https://doi.org/10.3390/coatings11080973
Chicago/Turabian StyleQi, Yunpeng, Zhihui Jia, Yajun Zhou, Yong Wang, Guangtao Zhao, Xiaolian Chao, Huiping Xing, and Yuhu Li. 2021. "Application of Ethylene Oxide Gas and Argon Gas Mixture System Method for Scale Deacidification of Cellulose-Based Cultural Heritage Collections" Coatings 11, no. 8: 973. https://doi.org/10.3390/coatings11080973
APA StyleQi, Y., Jia, Z., Zhou, Y., Wang, Y., Zhao, G., Chao, X., Xing, H., & Li, Y. (2021). Application of Ethylene Oxide Gas and Argon Gas Mixture System Method for Scale Deacidification of Cellulose-Based Cultural Heritage Collections. Coatings, 11(8), 973. https://doi.org/10.3390/coatings11080973