A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions
Abstract
:1. Introduction
2. Strontium Ruthenate: SrRuO
Multiple Phases
3. Half Quantum Fluxoid
4. Broken Time Reversal Symmetry
5. Dynamics of Chiral Domains Walls
6. Proximity Structures
7. Candidate Materials for Unconventional Superconducting Junctions
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tinkham, M. Introduction to Superconductivity, 2nd ed.; Dover Publications: Mineola, NY, USA, 2004. [Google Scholar]
- Sigrist, M.; Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 1991, 63, 239–311. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Volkov, A.F.; Efetov, K.B. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 2005, 77, 1321–1373. [Google Scholar] [CrossRef] [Green Version]
- Linder, J.; Robinson, J.W.A. Superconducting spintronics. Nat. Phys. 2015, 11, 307–315. [Google Scholar] [CrossRef]
- Eschrig, M.; Löfwander, T. Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nat. Phys. 2008, 4, 138–143. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Volkov, A.F.; Efetov, K.B. Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 2001, 86, 4096–4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, E.; Barber, Z.H.; Maasilta, I.J.; Senapati, K. Domain wall induced modulation of low field H–T phase diagram in patterned superconductor-ferromagnet stripes. AIP Adv. 2019, 9, 045107. [Google Scholar] [CrossRef] [Green Version]
- Keizer, R.S.; Goennenwein, S.T.B.; Klapwijk, T.M.; Miao, M.; Xiao, G.; Gupta, A. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 2006, 439, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Khaire, T.S.; Khasawneh, M.A.; Pratt, W.P., Jr.; Birge, N.O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 2010, 104, 137002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.W.A.; Witt, J.D.S.; Blamire, M.G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 2010, 329, 59–61. [Google Scholar] [CrossRef]
- Anwar, M.S.; Czeschka, Z.; Hesselberth, M.; Poru, M.; Aarts, J. Long-range supercurrents through half-metallic ferromagnetic CrO2. Phys. Rev. B 2010, 82, 100501(R). [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.S.; Aarts, J. Inducing supercurrents in thin films of ferromagnetic CrO2. Supercond. Sci. Technol. 2011, 24, 024016. [Google Scholar] [CrossRef]
- Anwar, M.S.; Veldhorst, M.; Brinkman, A.; Aarts, J. Long range supercurrents in ferromagnetic CrO2 using a multilayer contact structure. Appl. Phys. Lett. 2012, 100, 052602. [Google Scholar] [CrossRef] [Green Version]
- Komori, S.; Devine-Stoneman, J.M.; Ohnishi, K.; Yang, G.; Devizorova, Z.; Mironov, S.; Montiel, X.; Olde Olthof, L.A.B.; Cohen, L.F.; Kurebayashi, H.; et al. Spin-orbit coupling suppression and singlet-state blocking of spin-triplet Cooper pairs. Sci. Adv. 2021, 7, eabe0128. [Google Scholar] [CrossRef]
- Bergeret, F.S.; Tokatly, I.V. Singlet-triplet conversion and the long-range proximity effect in superconductor-ferromagnet structures with generic spin dependent fields. Phys. Rev. Lett. 2013, 110, 117003. [Google Scholar] [CrossRef] [Green Version]
- Bergeret, F.S.; Tokatly, I.V. Spin-orbit coupling as a source of long-range triplet proximity effect in superconductorferromagnet hybrid structures. Phys. Rev. B 2014, 89, 134517. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S.H.; Kulagina, I.; Linder, J. Controlling superconducting spin flow with spin-flip immunity using a single homogeneous ferromagnet. Sci. Rep. 2016, 6, 23926. [Google Scholar] [CrossRef] [Green Version]
- Ran, S.; Eckberg, C.; Ding, Q.-P.; Furukawa, Y.; Metz, T.; Saha, S.R.; Liu, I.L.; Zic, M.; Kim, H.; Paglione, J.; et al. Nearly ferromagnetic spin-triplet superconductivity. Science 2019, 365, 684–687. [Google Scholar] [CrossRef] [Green Version]
- Maeno, Y.; Hashimoto, H.; Yoshida, K.; Nishizaki, S.; Fujita, T.; Bednorz, J.G.; Lichtenberg, F. Superconductivity in a layered perovskite without copper. Nature 1994, 372, 532–534. [Google Scholar] [CrossRef]
- Maeno, Y.; Kittaka, S.; Nomura, T.; Yonezawa, S.; Ishida, K. Evaluation of spin-triplet superconductivity in Sr2RuO4. J. Phys. Soc. Jpn. 2012, 81, 011009. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, A.P.; Scaffidi, T.; Hicks, C.W.; Maeno, Y. Even odder after twenty-three years: The superconducting order parameter puzzle of Sr2RuO4. NPJ Quantum Mater. 2017, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, A.P.; Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 2003, 75, 657–712. [Google Scholar] [CrossRef]
- Kallin, C. Chiral p-wave order in Sr2RuO4. Rep. Prog. Phys. 2012, 75, 042501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Mao, Z.Q. Unconventional superconductivity in Sr2RuO4. Phys. C Supercond. Appl. 2015, 514, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, A.P.; Haselwimmer, R.K.W.; Tyler, A.W.; Lonzarich, G.G.; Mori, Y.; Nishizaki, S.; Maeno, Y. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 1998, 80, 161–164. [Google Scholar] [CrossRef]
- Mao, Z.Q.; Mori, Y.; Maeno, Y. Suppression of superconductivity in Sr2RuO4 caused by defects. Phys. Rev. B. 1999, 61, 610–614. [Google Scholar] [CrossRef]
- Kapitulnik, A.; Xia, J.; Schemm, E.; Palevski, A. Polar Kerr effect as probe for time-reversal symmetry breaking in unconventional superconductors. New J. Phys. 2009, 11, 055060. [Google Scholar] [CrossRef]
- Luke, G.M.; Fudamoto, Y.; Kojima, K.M.; Larkin, M.I.; Merrin, J.; Nachumi, B.; Uemura, Y.J.; Maeno, Y.; Mao, Z.Q.; Mori, Y.; et al. Time-reversal symmetry-breaking superconductivity in Sr2RuO4. Nature 1998, 394, 558–561. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Maeno, Y.; Beyersdorf, P.T.; Fejer, M.M.; Kapitulnik, A. High resolution polar Kerr effect measurements of Sr2RuO4: Evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 2006, 97, 167002. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.D.; Mao, Z.Q.; Maeno, Y.; Liu, Y. Odd-parity superconductivity in Sr2RuO4. Science 2004, 306, 1151–1154. [Google Scholar] [CrossRef]
- Kidwingira, F.; Strand, J.D.; Harlingen, D.J.V.; Maeno, Y. Dynamical superconducting order parameter domains in Sr2RuO4. Science 2006, 314, 1267–1271. [Google Scholar] [CrossRef]
- Kashiwaya, S.; Kambara, H.; Kashiwaya, H.; Furuta, T.; Yaguchi, H.; Asano, Y.; Tanaka, Y.; Maeno, Y. Fabrication and transport properties of Sr2RuO4 microdevices. Physica C 2010, 470, S736–S737. [Google Scholar] [CrossRef]
- Kashiwaya, H.; Kashiwaya, S.; Kambara, H.; Furuta, T.; Yaguchi, H.; Tanaka, Y.; Maeno, Y. Edge states of Sr2RuO4 detected by in-plane tunneling spectroscopy. Phys. Rev. Lett. 2011, 107, 077003. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, K.; Kashiwaya, S.; Kashiwaya, H.; Koyanagi, M.; Mawatari, Y.; Tanaka, Y.; Maeno, Y. High-supercurrent-density contacts and Josephson effect of strontium ruthenate. Appl. Phys. Exp. 2012, 5, 113101. [Google Scholar] [CrossRef]
- Anwar, M.S.; Nakamura, T.; Yonezawa, S.; Yakabe, M.; Ishiguro, R.; Takayanagi, H.; Maeno, Y. Anomalous switching in Nb/Ru/Sr2RuO4 topological junctions by chiral domain wall motion. Sci. Rep. 2013, 3, 2480. [Google Scholar] [CrossRef]
- Anwar, M.S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y. Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions. Phys. Rev. B 2017, 95, 224509. [Google Scholar] [CrossRef] [Green Version]
- Hicks, C.W.; Kirtley, J.R.; Lippman, T.M.; Koshnick, N.C.; Huber, M.E.; Maeno, Y.; Yuhasz, W.M.; Maple, M.B.; Moler, K.A. Limits on superconductivity-related magnetization in Sr2RuO4 and PrOs4Sb12 from scanning SQUID microscopy. Phys. Rev. B 2010, 81, 214501. [Google Scholar] [CrossRef] [Green Version]
- Hassinger, E.; Bourgeois-Hope, P.; Taniguchi, H.; René de Cotret, S.; Grissonnanche, G.; Anwar, M.S.; Maeno, Y.; Doiron-Leyraud, N.; Taillefer, L. Vertical line nodes in the superconducting gap structure of Sr2RuO4. Phys. Rev. X 2007, 7, 011032. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, S.; Kajikawa, T.; Maeno, Y. First order superconducting transition of Sr2RuO4. Phys. Rev. Lett. 2013, 110, 077003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, C.W.; Brodsky, D.O.; Yelland, E.A.; Gibbs, A.S.; Bruin, J.A.N.; Barber, M.E.; Edkins, S.D.; Nishimura, K.; Yonezawa, S.; Maeno, Y.; et al. Strong increase of Tc of Sr2RuO4 under both tensile and compressive strain. Science 2014, 344, 283–285. [Google Scholar] [CrossRef] [PubMed]
- Steppke, A.; Zhao, L.; Barber, M.E.; Scaffidi, T.; Jerzembeck, F.; Rosner, H.; Gibbs, A.S.; Maeno, Y.; Simon, S.H.; Mackenzie, A.P.; et al. Strong peak in Tc of Sr2RuO4 under uniaxial pressure. Science 2017, 355, 133. [Google Scholar] [CrossRef] [Green Version]
- Ishida, K.; Mukuda, H.; Kitaoka, Y.; Asayama, Y.; Mao, Z.Q.; Mori, Y.; Maeno, Y. Spin-triplet superconductivity in Sr2RuO4 identified by 17O knight shift. Nature 1998, 396, 658–660. [Google Scholar] [CrossRef]
- Duffy, J.A.; Hayden, S.M.; Maeno, Y.; Mao, Z.; Kulda, J.; McIntyre, G.J. Polarized-neutron scattering study of the cooper-pair moment in Sr2RuO4. Phys. Rev. Lett. 2000, 85, 5412–5415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pustogow, A.; Luo, Y.; Chronister, A.; Su, Y.S.; Sokolov, D.A.; Jerzembeck, F.; Mackenzie, A.P.; Hicks, C.W.; Kikugawa, N.; Raghu, S.; et al. Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance. Nature 2019, 574, 72–75. [Google Scholar] [CrossRef]
- Ishida, K.; Manago, M.; Kinjo, K.; Maeno, Y. Reduction of the 17O Knight Shift in the Superconducting State and the Heat-up Effect by NMR Pulses on Sr2RuO4. J. Phys. Soc. Jpn. 2020, 89, 034712. [Google Scholar] [CrossRef]
- Petsch, A.N.; Zhu, M.; Enderle, M.; Mao, Z.Q.; Maeno, Y.; Mazin, I.I.; Hayden, S.M. Reduction of the spin susceptibility in the superconducting state of Sr2RuO4 observed by polarized neutron scattering. Phys. Rev. Lett. 2020, 125, 217004. [Google Scholar] [CrossRef]
- Grinenko, V.; Ghosh, S.; Sarkar, R.; Orain, J.-C.; Nikitin, A.; Elender, M.; Das, D.; Guguchia, Z.; Bruckner, F.; Barber, M.E.; et al. Split superconducting and time-reversal symmetry-breaking transitions in Sr2RuO4 under stress. Nat. Phys. 2021, 17, 748–754. [Google Scholar] [CrossRef]
- Benhabib, S.; Lupien, C.; Paul, I.; Berges, L.; Dion, M.; Nardone, M.; Zitouni, A.; Mao, Z.Q.; Maeno, Y.; Georges, A.; et al. Ultrasound evidence for a two-component superconducting order parameter in Sr2RuO4. Nat. Phys. 2021, 17, 194–198. [Google Scholar] [CrossRef]
- Mao, Z.Q.; Maeno, Y.; Fukazawa, H. Crystal growth of Sr2RuO4. Mater. Res. Bull. 2000, 35, 1813–1824. [Google Scholar] [CrossRef]
- Bobowski, J.S.; Kikugawa, N.; Miyoshi, T.; Suwa, H.; Xu, H.-S.; Yonezawa, S.; Sokolov, D.A.; Mackenzie, A.P.; Maeno, Y. Improved single-crystal growth of Sr2RuO4. Condens. Matter 2019, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Maeno, Y.; Ando, T.; Mori, Y.; Ohmichi, E.; Ikeda, S.; Nishizaki, S.; Nakatsuji, S. Enhancement of superconductivity of Sr2RuO4 to 3K by embedded metallic microdomains. Phys. Rev. Lett. 1998, 81, 3765–3768. [Google Scholar] [CrossRef]
- Shiroka, T.; Fittipaldi, R.; Cuoco, M.; De Renzi, R.; Maeno, Y.; Lycett, R.J.; Ramos, S.; Forgan, E.M.; Baines, C.; Rost, A.; et al. μSR studies of superconductivity in eutectically grown mixed ruthenates. Phys. Rev. B 2012, 85, 9398. [Google Scholar] [CrossRef]
- Kaneyasu, H.; Hayashi, N.; Gut, B.; Makoshi, K.; Sigrist, M. Phase transition in the 3 Kelvin phase in the eutectic Sr2RuO4-Ru. J. Phys. Soc. Jpn. 2010, 79, 104705. [Google Scholar] [CrossRef] [Green Version]
- Kaneyasu, H.; Sigrist, M. Nucleation of vortex state in Ru-inclusion in eutectic ruthenium oxide Sr2RuO4-Ru. J. Phys. Soc. Jpn. 2010, 79, 053706. [Google Scholar] [CrossRef] [Green Version]
- Little, W.A.; Parks, R.D. Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 1962, 9, 9–15. [Google Scholar] [CrossRef]
- Jang, J.; Ferguson, D.G.; Vakaryuk, V.; Budakian, R.; Chung, S.B.; Goldbart, P.M.; Maeno, Y. Observation of half-height magnetization steps in Sr2RuO4 microrings. Science 2011, 331, 186–188. [Google Scholar] [CrossRef] [Green Version]
- Asaoka, R.; Tsuchiura, H.; Sigrist, M. Spin-current induced around half-quantum vortices in chiral p-wave superconducting states. J. Phys. Conf. Ser. 2017, 871, 012025. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Ying, Y.A.; Staley, N.E.; Xin, Y.; Fobes, D.; Liu, T.J.; Mao, Z.Q.; Liu, Y. Unconventional quantum oscillations in mesoscopic rings of spin-triplet superconductor Sr2RuO4. Phys. Rev. B 2013, 87, 081104(R). [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Ying, Y.; Zakrzewski, B.; Fobes, D.; Liu, T.; Mao, Z.; Liu, Y. Magnetoresistance oscillations and the half-flux-quantum state in spin-triplet superconductor Sr2RuO4. arXiv 2015, arXiv:1507.00326. [Google Scholar]
- Yasui, Y.; Lahavi, K.; Anwar, M.S.; Nakamura, Y.; Yonezawa, S.; Terashima, T.; Aarts, J.; Maeno, Y. Little-Parks oscillations with half-quantum fluxoid features in Sr2RuO4 microrings. Phys. Rev. B 2017, 96, 180507(R). [Google Scholar] [CrossRef] [Green Version]
- Yasui, Y.; Lahabi, K.; Becerra, V.F.; Fermin, R.; Anwar, M.S.; Yonezawa, S.; Terashima, T.; Milosevic, M.V.; Aarts, J.; Maeno, Y. Spontaneous emergence of Josephson junctions in homogeneous rings of single-crystal Sr2RuO4. NPJ Quantum Mater. 2020, 5, 21. [Google Scholar] [CrossRef]
- Cai, X.; Zakrzewski, B.M.; Ying, Y.A.; Kee, H.-Y.; Sigrist, M.; Ortmann, J.E.; Sun, W.; Mao, Z.; Liu, Y. Magnetoresistance oscillation study of the half-quantum vortex in doubly connected mesoscopic superconducting cylinders of Sr2RuO4. arxiv 2020, arXiv:2010.15800. [Google Scholar]
- Matsumoto, M.; Sigrist, M. Quasiparticle states near the surface and the domain wall in a px ± ipy-wave superconductor. J. Phys. Soc. Jpn. 1999, 68, 994–1007. [Google Scholar] [CrossRef]
- Bouhon, A.; Sigrist, M. Influence of the domain walls on the Josephson effect in Sr2RuO4. New J. Phys. 2010, 12, 043031–043056. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Matsuno, M.; Ishiguro, R.; Kashiwaya, H.; Kashiwaya, S.; Nomura, S.; Takayanagi, H.; Maeno, Y. Magnetization of a mesoscopic superconducting Sr2RuO4 plate on micro-dc-SQUIDs. J. Phys. Soc. Jpn. 2014, 83, 094715. [Google Scholar] [CrossRef]
- Stone, M.; Roy, R. Edge modes, edge currents, and gauge invariance in px ± ipy superfluids and superconductors. Phys. Rev. B 2004, 69, 184511. [Google Scholar] [CrossRef] [Green Version]
- Kirtley, J.; Kallin, C.; Hicks, C.; Kim, E.A.; Liu, Y.; Moler, K.; Maeno, Y.; Nelson, K. Upper limit on spontaneous supercurrents in Sr2RuO4. Phys. Rev. B 2007, 76, 014526. [Google Scholar] [CrossRef] [Green Version]
- Curran, P.J.; Khotkevych, V.V.; Bending, S.J.; Gibbs, A.S.; Lee, S.L.; Mackenzie, A.P. Vortex imaging and vortex lattice transitions in superconducting Sr2RuO4 single crystals. Phys. Rev. B 2011, 84, 104507. [Google Scholar] [CrossRef] [Green Version]
- Björnsson, P.; Maeno, Y.; Huber, M.; Moler, K. Scanning magnetic imaging of Sr2RuO4. Phys. Rev. B 2005, 72, 012504. [Google Scholar] [CrossRef]
- Bluhm, H. Magnetic fields above the surface of a superconductor with internal magnetism. Phys. Rev. B 2007, 76, 144507. [Google Scholar] [CrossRef] [Green Version]
- Kawai, K.; Yada, K.; Tanaka, Y.; Asano, Y. Golubov, A.A.; Kashiwaya, S. Josephson effect in a multiorbital model for Sr2RuO4. Phys. Rev. B 2017, 95, 174518. [Google Scholar] [CrossRef] [Green Version]
- Kashiwaya, S.; Saitoh, K.; Kashiwaya, H.; Koyanagi, M.; Sato, M.; Yada, K.; Tanaka, Y.; Maeno, Y. Time-reversal invariant superconductivity of Sr2RuO4 revealed by Josephson effects. Phys. Rev. B 2019, 100, 094530. [Google Scholar] [CrossRef] [Green Version]
- Uchida, M.; Sakuraba, I.; Kawamura, M.; Ide, M.; Takahashi, K.S.; Tokura, Y.; Kawasaki, M. Characterization of Sr2RuO4 Josephson junctions made of epitaxial films. Phys. Rev. B 2020, 101, 035107. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Zadorozhny, Y.; Liu, Y.; Schlom, D.G.; Mori, Y.; Maeno, Y. Observation of anomalous temperature dependence of the critical current in Pb/Sr2RuO4/Pb junctions. Phys. Rev. B 1999, 59, 4433–4438. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakagawa, R.; Yamagishi, T.; Terashima, T.; Yonezawa, S.; Sigrist, M.; Maeno, Y. Topological competition of superconductivity in Pb/Ru/Sr2RuO4 junctions. Phys. Rev. B 2011, 84, 060512. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sumi, T.; Yonezawa, S.; Terashima, T.; Sigrist, M.; Hirono, K.; Maeno, Y. Essential configuration of Pb/Ru/Sr2RuO4 junctions exhibiting anomalous superconducting interference. J. Phys. Soc. Jpn 2012, 81, 064708. [Google Scholar] [CrossRef]
- Yamashiro, M.; Tanaka, Y.; Kashiwaya, S. Theory of the d.c. Josephson Effect in s-wave/p-wave/s-wave superconductor junction. J. Phys. Soc. Jpn. 1998, 67, 3364–3367. [Google Scholar] [CrossRef]
- Kambara, H.; Kashiwaya, S.; Yaguchi, H.; Asano, Y.; Tanaka, Y.; Maeno, Y. Anomalous transport through the p-wave superconducting channel in the 3-K phase of Sr2RuO4. Phys. Rev. Lett. 2008, 101, 267003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzdorf, R.; Fang, Z.; Zhang, J.I.; Kimura, T.; Tokura, Y.; Terakura, K.; Plummer, E.W. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr2RuO4. Science 2008, 289, 746–748. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.S.; Shin, Y.J.; Lee, S.R.; Kang, S.J.; Sugimoto, Y.; Yonezawa, S.; Noh, T.W.; Maeno, Y. Ferromagnetic SrRuO3 thin-film deposition on a spin-triplet superconductor Sr2RuO4 with a highly conducting interface. Appl. Phys. Exp. 2015, 8, 019202–019204. [Google Scholar] [CrossRef] [Green Version]
- Siwakoti, P.; Guo, H.; Wang, Z.; Zhu, Y.; Fittipaldi, R.; Vecchione, A.; Wang, Y.; Mao, Z.; Zhang, J. Coherent growth of oxide films on a cleaved layered metal oxide substrate. Phys. Rev. Mater. 2018, 2, 104407. [Google Scholar] [CrossRef]
- Anwar, M.S.; Lee, S.R.; Ishiguro, R.; Sugimoto, Y.; Tano, Y.; Kang, S.J.; Shin, Y.J.; Yonezawa, S.; Manske, D.; Takayanagi, H.; et al. Direct penetration of spin-triplet superconductivity into a ferromagnet in Au/SrRuO3/Sr2RuO4 junctions. Nat. Commun. 2016, 7, 13220. [Google Scholar] [CrossRef]
- Anwar, M.S.; Kunieda, M.; Ishiguro, R.; Lee, S.R.; Sow, C.; Robinson, J.W.A.; Yonezawa, S.; Noh, T.W.; Maeno, Y. Anomalous anisotropic behaviour of spin-triplet proximity effect in Au/SrRuO3/Sr2RuO4 junctions. Sci. Rep. 2019, 9, 15827. [Google Scholar] [CrossRef]
- Anwar, M.S.; Kunieda, M.; Ishiguro, R.; Lee, S.R.; Olthof, L.A.B.; Robinson, J.W.A.; Yonezawa, S.; Noh, T.W.; Maeno, Y. Observation of superconducting gap spectra of long-range proximity effect in Au/SrTiO3/SrRuO3/Sr2RuO4 tunnel junctions. Phys. Rev. B 2019, 100, 024516. [Google Scholar] [CrossRef] [Green Version]
- Singh, P. Coexistence of superconductivity and ferromagnetism. J. Supercond. Nov. Magn. 2011, 24, 945–949. [Google Scholar] [CrossRef]
- Aoki, D.; Flouquet, J. Ferromagnetism and superconductivity in uranium compounds. J. Phys. Soc. Jpn. 2012, 81, 011003. [Google Scholar] [CrossRef] [Green Version]
- Otop, A.; Boogaard, G.R.; Hendrikx, R.W.A.; Hesselberth, M.B.S.; Ciuhu, C.; Lodder, A.; Aarts, J. Proximity effects in the superconductor/heavy-fermion bilayer system Nb/CeCu6. Europhys. Lett. 2003, 64, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Maple, M.B. Strongly correlated electron phenomena in f-electron materials. J. Phys. Soc. Jpn. 2005, 74, 222–238. [Google Scholar] [CrossRef]
- Pfleiderer, C. Superconducting phases of f-electron compounds. Rev. Mod. Phys. 2009, 81, 1551–1624. [Google Scholar] [CrossRef] [Green Version]
- White, B.D.; Thompson, J.D.; Maple, M.B. Unconventional superconductivity in heavy-fermion compounds. Physica C 2015, 514, 246–278. [Google Scholar] [CrossRef] [Green Version]
- Jourdan, M.; Huth, M.; Adrian, H. Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2Al3. Nature 1999, 398, 47–49. [Google Scholar] [CrossRef]
- Shimozawa, M.; Watashige, T.; Yasumoto, S.; Mizakami, Y.; Nakamura, M.; Shishido, H.; Gho, S.K.; Terashima, T.; Shibauchi, T.; Matsuda, Y. Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn5. Phys. Rev. B 2012, 86, 144526. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; White, B.D.; Lum, I.K.; Kim, H.; Tanatar, M.A.; Straszheim, W.E.; Prozorov, R.; Keiber, T.; Bridges, F.; Shu, L.; et al. Resolution of the discrepancy between the variation of the physical properties of Ce1-xYbxCoIn5 single crystals and thin films with Yb composition. Philos. Mag. 2014, 94, 4219–4231. [Google Scholar] [CrossRef] [Green Version]
- Frigeri, P.A.; Agterberg, D.F.; Koga, A.; Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 2004, 92, 097001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smidman, M.; Salamon, M.B.; Yuan, H.Q.; Agterberg, D.F. Superconductivity and spin-orbit coupling in non-centrosymmetric materials: A review. Rep. Prog. Phys. 2017, 80, 036501. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, S. Bulk Topological Superconductors. AAPPS Bull. 2016, 26, 3–11. [Google Scholar]
- Kong, P.P.; Zhang, J.L.; Zhang, S.J.; Zhu, J.; Liu, Q.Q.; Yu, R.C.; Fang, Z.; Jin, C.Q.; Yang, W.G.; Yu, X.H.; et al. Superconductivity of the topological insulator Bi2Se3 at high pressure. J. Phys. Condens. Matter 2013, 25, 362204. [Google Scholar] [CrossRef]
- Sato, M.; Ando, Y. Topological superconductors: A review. Rep. Prog. Phys. 2017, 80, 076501. [Google Scholar] [CrossRef] [Green Version]
- Neha, P.; Biswas, P.K.; Das, T.; Patnaik, S. Direct evidence for time-reversal symmetry breaking in topological superconductor Sr0.1Bi2Se3. Phys. Rev. Mater. 2019, 3, 074201. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, M.S.; Robinson, J.W.A. A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions. Coatings 2021, 11, 1110. https://doi.org/10.3390/coatings11091110
Anwar MS, Robinson JWA. A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions. Coatings. 2021; 11(9):1110. https://doi.org/10.3390/coatings11091110
Chicago/Turabian StyleAnwar, Muhammad Shahbaz, and Jason W. A. Robinson. 2021. "A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions" Coatings 11, no. 9: 1110. https://doi.org/10.3390/coatings11091110
APA StyleAnwar, M. S., & Robinson, J. W. A. (2021). A Review of Electronic Transport in Superconducting Sr2RuO4 Junctions. Coatings, 11(9), 1110. https://doi.org/10.3390/coatings11091110