Synthesis of MgO Coating Gd2O3 Nanopowders for Consolidating Gd2O3-MgO Nanocomposite with Homogenous Phase Domain Distribution and High Mid-Infrared Transparency
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of the Gd2O3-MgO Core–Shell Nanopowders by Urea Precipitation
2.2. Synthesis of the Gd2O3-MgO Nanopowders by Sol–Gel Combustion
2.3. Sintering of the Gd2O3-MgO Nanocomposite
2.4. Investigation for the Nanocomposite Powders and Sintered Ceramics
3. Results and Discussion
3.1. The Thermal Behaviors of the Precursors Synthesized by Two Processes
3.2. Effects of Preparation Process on the Performances of Nanocomposite Powders
3.3. Effects of Synthesis Process on the Phase, Microstructure, Optical, and Mechanical Properties of Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Wang, J.; Ma, J.; Ni, M.; Yang, F.; Liu, P.; Lee, K.Y.; Hsiang, H.-I.; Shen, D.; Tang, D. Fabrication of, high-efficiency Yb:Y2O3 laser ceramics without photodarkening. J. Am. Ceram. Soc. 2022, 105, 3375–3381. [Google Scholar] [CrossRef]
- Reza, P.; Hassanzadeh-Tabrizi, S.A.; Reza, E.; Amir, A.; Amir, A.N. Polycrystalline infrared-transparent MgO fabricated by spark plasma sintering. Ceram. Inter. 2019, 45, 18943–18950. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, S.; Zhang, Y.B. Effect of Cr3+ on the microstructure and photoluminescence of MgAl2O4 transparent ceramic. J. Lumin. 2022, 242, 11852. [Google Scholar] [CrossRef]
- Alhaji, A.; Taherian, M.H.; Ghorbani, S.; Sharifnia, S.A. Development of synthesis and granulation process of MgAl2O4 powder for the fabrication of transparent ceramic. Opt. Mater. 2019, 98, 10944. [Google Scholar] [CrossRef]
- Gan, L.; Park, Y.-J.; Kim, H.; Kim, J.-M.; Ko, J.-W.; Lee, J.-W. Fabrication of submicron-grained IR-transparent Y2O3 ceramics from commerical nano-raw powders. Ceram. Inter. 2015, 41, 11992–11998. [Google Scholar] [CrossRef]
- Jiang, N.; Xie, R.-J.; Liu, Q.; Li, J. Fabrication of sub-micrometer MgO transparent ceramics by spark plasma sintering. J. Eur. Ceram. Soc. 2017, 37, 4947–4953. [Google Scholar] [CrossRef]
- Xu, S.Q.; Li, J.; Li, C.Y.; Pan, Y.B.; Guo, J.K. Infrared-transparent Y2O3-MgO nanocomposites fabricated by the glucose sol-gel combustion and hot-pressing technique. J. Am. Ceram. Soc. 2015, 98, 2796–2802. [Google Scholar] [CrossRef]
- Liu, L.H.; Morita, K.; Suzuki, T.S.; Kim, B.N. Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering. J. Eur. Ceram. Soc. 2020, 40, 4547–4555. [Google Scholar] [CrossRef]
- Chang, C.S.; Hon, M.H.; Yang, S.J. The optical properties of hot-pressed magnesium fluoride and single-crystal magnesium fluoride in the 0.1 to 9.0 μm. J. Mater. Sci. 1991, 26, 1627–1630. [Google Scholar] [CrossRef]
- Mroz, T.; Goldman, L.M.; Gledhill, A.D.; Li, D.S.; Padture, N.P. Nanostructured, infrared-transparent magnesium-aluminate spinel with superior mechanical properties. Int. J. Appl. Ceram. Technol. 2012, 9, 83–90. [Google Scholar] [CrossRef]
- Al-Furjan, M.S.H.; Shan, L.; Shen, X.; Zarei, M.S.; Hajmohammad, M.H.; Kolahchi, R. A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced rolymer composites. J. Mater. Res. Technol. 2022, 19, 2930–2959. [Google Scholar] [CrossRef]
- Al-Furjan, M.S.H.; Xu, M.X.; Farrokhian, A.; Jafari, G.S.; Shen, X.; Kolahchi, R. On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag. Waves Random Complex Media 2022, 2030499. [Google Scholar] [CrossRef]
- Al-Furjan, M.S.H.; Shan, L.; Shen, X.; Kolahchi, R.; Rajak, D.K. Combination of FEM-DOM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories. Thin. Wall. Struct. 2022, 178, 109495. [Google Scholar] [CrossRef]
- Al-Furjan, M.S.H.; Yin, C.; Shen, X.; Kolahchi, R.; Zarei, M.S.; Hajmohammad, M.H. Energy absorption and vibration of smart auxetic FG porous curved conical panels resting on the frictional viscoelastic torsional substrate. Mech. Syst. Signal. Pract. 2022, 178, 109269. [Google Scholar] [CrossRef]
- Fujioka, K.; Yagasaki, K.; Sawada, T.; Minemoto, H.; Fuji, H.; Yamamoto, K. AlN-Ce-doped yttrium aluminum garnet composite ceramic phosphor for high-power laser lighting. Opt. Mater. 2021, 121, 111507. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Q.; Huang, S.; Jiang, Y.; Chen, Z. Preparation and electrochemical study of PVDF-HFP/LATP/g-C3N4 composite polymer electrolyte membrane. Inorg. Chem. Commun. 2021, 131, 108793. [Google Scholar] [CrossRef]
- Liu, L.H.; Morita, K.; Suzuki, T.S.; Kim, B.N. Effect of volume ratio on optical and mechanical properties of Y2O3-MgO composites fabricated by spark-plasma-sintering process. J. Eur. Ceram. Soc. 2021, 41, 2096–2105. [Google Scholar] [CrossRef]
- Muoto, C.K.; Jordan, E.H.; Gell, M.; Aindow, M. Phase homogeneity in Y2O3-MgO nanocomposites synthesized by thermal decomposition of nitrate precursors with ammonium acetate additions. J. Am. Ceram. Soc. 2011, 94, 4207–4217. [Google Scholar] [CrossRef]
- Wu, N.; Li, X.D.; Li, J.-G.; Zhu, Q.; Sun, X.D. Fabrication of Gd2O3-MgO nanocomposite optical ceramics with varied crystallographic modifications of Gd2O3 constituent. J. Am. Ceram. Soc. 2018, 101, 4887–4891. [Google Scholar] [CrossRef]
- Wu, N.; Li, X.D.; Zhang, M.; Ren, Y.; Zhu, Q.; Peng, H.J.; Ru, H.Q.; Sun, X. Synthesis of nanopowders with low agglomeration by elaborating Φ values for producing Gd2O3-MgO nanocomposites with extremely fine grain sizes and high mid-infrared transparency. J. Eur. Ceram. Soc. 2021, 41, 2898–2907. [Google Scholar] [CrossRef]
- Wafula, H.; Juma, A.; Sakwa, T.; Musembi, R.; Simiyu, J. A surface photovoltage study of surface defects on Co-doped TiO2 thin films deposited by spray pyrolysis. Coatings 2016, 6, 30. [Google Scholar] [CrossRef]
- Jiang, D.; Mukherjee, A.K. Spark plasma sintering of an infrared-transparent Y2O3-MgO nanocomposite. J. Am. Ceram. Soc. 2010, 93, 769–773. [Google Scholar] [CrossRef]
- Bedekar, V.; Chavan, S.V.; Tyagi, A.K. Highly sinter-active nanocrystalline RE2O3 (RE = Gd, Eu, Dy) by a combustion process, and role of oxidant-to-fuel ratio in preparing their different crystallographic modifications. J. Mater. Res. 2007, 22, 587–594. [Google Scholar] [CrossRef]
- Ma, H.J.; Jung, W.K.; Baek, C.Y.; Kim, D.K. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite. J. Eur. Ceram. Soc. 2017, 37, 4902–4911. [Google Scholar] [CrossRef]
- Svetlana, R.E.; Aliya, N.M.; Oksana, V.N.; Zhang, Y.Q.; Skibina, J.D.; Lamberov, A.A. Formation of phases and porous system in the product of hydrothermal treatment of x-Al2O3. Coatings 2018, 8, 30. [Google Scholar] [CrossRef]
- Xu, S.Q.; Li, J.; Li, C.Y.; Pan, Y.B.; Guo, J.K. Hot pressing of infrared-transparent of Y2O3-MgO nanocomposites using sol-gel combustion synthesized powders. J. Am. Ceram. Soc. 2015, 98, 1019–1026. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.D.; Zhang, M.; Liu, S.H.; Li, J.-G.; Sun, X.D. Synthesis of equal-sized Y2O3:Bi,Eu mono-spheres and their color-tunable photoluminescence and thermal quenching properties. Ceram. Inter. 2018, 44, 18462–18470. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.D.; Liu, S.H.; Zhu, Q.; Huo, D.; Li, J.-G.; Sun, X. Fabrication of Lu2O3:Eu transparent ceramics using powder consisting of mono-dispersed spheres. Ceram. Inter. 2015, 41, 9577–9584. [Google Scholar] [CrossRef]
- Man, X.; Wu, N.; Zhang, M.; He, H.L.; Sun, X.D.; Li, X.D. Lu2O3-MgO nano-powder: Synthesis and fabrication of composite infrared transparent ceramics. J. Inorg. Mater. 2021, 36, 1263–1269. [Google Scholar] [CrossRef]
- Jiang, H.T.; Qin, H.M.; Feng, S.W.; Chen, H.B.; Jiang, J. Y2O3-MgO composite nano-ceramics prepared from core-shell nano-powders. Chin. J. Lumin. 2021, 42, 997–1006. [Google Scholar] [CrossRef]
- Roy, S.; Sharma, A.D.; Roy, S.N.; Maiti, H.S. Synthesis of YB2Cu3O7−x powder by autoignition of citrate-nitrate gel. J. Mater. Res. 1993, 8, 2761–2766. [Google Scholar] [CrossRef]
- Chakrabort, A.; Devi, P.S.; Roy, S.; Maiti, H.S. Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an autoignition process. J. Mater. Res. 1994, 9, 986–991. [Google Scholar] [CrossRef]
- Muoto, C.K.; Jordan, E.H.; Gell, M.; Aindow, M. Effect of precursor chemistry on the structural characteristics of Y2O3-MgO nanocomposites synthesized by a combined sol-gel/thermal decomposition route. J. Am. Ceram. Soc. 2011, 94, 372–381. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Dou, K. Judd-Ofelt intensity parameters and spectral properties of Gd2O3:Eu3+ nanocrystals. J. Phys. Chem. B 2006, 110, 20277–20281. [Google Scholar] [CrossRef] [PubMed]
- Awin, E.W.; Sridar, S.; Shabadi, R.; Kumar, R. Structural, functional and mechanical properties of spark plasma sintered gadolinia (Gd2O3). Ceram. Inter. 2016, 42, 1384–1391. [Google Scholar] [CrossRef]
- Portnoi, K.I.; Fadeeva, V.I.; Timofeeva, N.I. The polymorphism of some rare earth oxides and their reaction with water. Sov. At. Energy 1964, 14, 582–585. [Google Scholar] [CrossRef]
- Muoto, C.K.; Jordan, E.H.; Gell, M.; Aindow, M. Phase homogeneity in MgO-ZrO2 nanocomposites synthesized by a combined sol-gel/thermal decomposition route. J. Am. Ceram. Soc. 2010, 93, 3102–3109. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Zhu, Q.Q.; Feng, T.; Qian, K.C.; Xie, J.X.; Liu, L.K.; Zhang, G.; Wang, W.; Yuan, Q.; Feng, M.; et al. Fabrication of infrared-transparent Y2O3-MgO composites using nanopowders synthesized via thermal decomposition. Ceram. Inter. 2021, 47, 13007–13014. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, L.C.; Chen, D.Y.; Jordan, E.H.; Gell, M. Y2O3-MgO-ZrO2 infrared transparent ceramic nanocomposites. J. Am. Ceram. Soc. 2012, 95, 1033–1037. [Google Scholar] [CrossRef]
- Iyer, A.; Jacquelynn, K.M.; Reutenaur, J.; Suib, S.L.; Aindow, M.; Gell, M.; Jordan, E.H. A sucrose-mediated sol-gel technique for the synthesis of MgO-Y2O3 nanocomposites. J. Am. Ceram. Soc. 2013, 96, 346–350. [Google Scholar] [CrossRef]
Experiment Method | DBET (nm) | DXRD (nm) | Agglomeration Factor |
---|---|---|---|
Precipitation | 59.8 | 32.3 | 1.9 |
Sol–gel | 29.7 | 9.1 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Fu, Z.; Long, H.; Wang, J.; Zhang, J.; Hou, Z.; Li, X.; Sun, X. Synthesis of MgO Coating Gd2O3 Nanopowders for Consolidating Gd2O3-MgO Nanocomposite with Homogenous Phase Domain Distribution and High Mid-Infrared Transparency. Coatings 2022, 12, 1435. https://doi.org/10.3390/coatings12101435
Wu N, Fu Z, Long H, Wang J, Zhang J, Hou Z, Li X, Sun X. Synthesis of MgO Coating Gd2O3 Nanopowders for Consolidating Gd2O3-MgO Nanocomposite with Homogenous Phase Domain Distribution and High Mid-Infrared Transparency. Coatings. 2022; 12(10):1435. https://doi.org/10.3390/coatings12101435
Chicago/Turabian StyleWu, Nan, Zhongchao Fu, Haibo Long, Jianming Wang, Jun Zhang, Zhaoxia Hou, Xiaodong Li, and Xudong Sun. 2022. "Synthesis of MgO Coating Gd2O3 Nanopowders for Consolidating Gd2O3-MgO Nanocomposite with Homogenous Phase Domain Distribution and High Mid-Infrared Transparency" Coatings 12, no. 10: 1435. https://doi.org/10.3390/coatings12101435
APA StyleWu, N., Fu, Z., Long, H., Wang, J., Zhang, J., Hou, Z., Li, X., & Sun, X. (2022). Synthesis of MgO Coating Gd2O3 Nanopowders for Consolidating Gd2O3-MgO Nanocomposite with Homogenous Phase Domain Distribution and High Mid-Infrared Transparency. Coatings, 12(10), 1435. https://doi.org/10.3390/coatings12101435