Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice
Abstract
:1. Introduction
2. Model
3. Phase Transition
4. Hysteresis Loop
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martyanov, O.N.; Yudanov, V.F.; Lee, R.N.; Nepijko, S.A.; Elmers, H.J.; Hertel, R.; Schneider, C.M.; Schönhense, G. Ferromagnetic resonance study of thin film antidot arrays: Experiment and micromagnetic Simulations. Phys. Rev. B 2007, 75, 174429. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, M.; Pirota, K.R.; Navas, D.; Asenjo, A.; Hernández-Vélez, M.; Prieto, P.; Sanz, J.M. Ordered magnetic nanohole and antidot arrays prepared through replication from anodic alumina templates. J. Magn. Magn. Mater. 2008, 320, 1978–1983. [Google Scholar] [CrossRef]
- Moore, L.; Goldhaber-Gordon, D. Magnetic lattice surprise. Nat. Phys. 2007, 3, 295–296. [Google Scholar] [CrossRef]
- Beroulle, V.; Bertrand, I.; Latorre, L.; Nouet, P. Monolithic piezoresistive CMOS magnetic field sensors. Sens. Actuators A Phys. 2003, 103, 23–32. [Google Scholar] [CrossRef]
- Seemann, K.; Leiste, H.; Ziebert, C. Soft magnetic FeCoTaN film cores for new high-frequency CMOS compatible micro-inductors. J. Magn. Magn. Mater. 2007, 316, e879–e882. [Google Scholar] [CrossRef]
- Leitao, D.C.; Ventura, J.; Pereira, A.M.; Sousa, C.T.; Morira, J.M.; Carpinteiro, F.C.; Sousa, J.B.; Vazquez, M.; Araujo, J.P. Study of Nanostructured Array of Antidots Using Pulsed Magnetic Fields. J. Low Temp. Phys. 2010, 159, 245–248. [Google Scholar] [CrossRef]
- Braun, J.; Gompf, B.; Kobiela, G.; Dressel, M. How Holes Can Obscure the View: Suppressed Transmission through an Ultrathin Metal Film by a Subwavelength Hole Array. Phys. Rev. Lett. 2009, 103, 203901. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, E.T.; Kapaklis, V.; Patoka, P.; Giersig, M.; Fumagalli, P.; Garcia-Martin, A.; Ferreiro-Vila, E.; Ctistis, G. Magneto-optic enhancement and magnetic properties in Fe antidot films with hexagonal symmetry. Phys. Rev. B 2010, 81, 054424. [Google Scholar] [CrossRef] [Green Version]
- Kern, K.; Heitmann, D.; Grambow, P.; Zhang, Y.H.; Ploog, K. Collective excitations in antidots. Phys. Rev. Lett. 1991, 66, 1618–1621. [Google Scholar] [CrossRef] [PubMed]
- Weiss, D.; Richter, K.; Menschig, A.; Bergmann, R.; Schweizer, H.; von Klitzing, K.; Weimann, G. Quantized periodic orbits in large antidot arrays. Phys. Rev. Lett. 1993, 70, 4118–4121. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Adeyeye, A.O.; Singh, N. Magnetic antidot nanostructures: Effect of lattice geometry. Nanotechnology 2006, 17, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Cumings, J.; Heyderman, L.J.; Marrows, C.H.; Stamps, R.L. Focus on artificial frustrated systems. New J. Phys. 2014, 16, 075016. [Google Scholar] [CrossRef] [Green Version]
- Schumann, A.; Sothmann, B.; Szary, P.; Zabel, H. Charge ordering of magnetic dipoles in artificial honeycomb patterns. Appl. Phys. Lett. 2010, 97, 022509. [Google Scholar] [CrossRef] [Green Version]
- Castán-Guerrero, C.; Bartolomé, J.; Bartolomé, F.; Garcia, L.M.; Sesé, J.; Strichovanec, P.; Herrero-Albillos, J.; Merazzo, K.J.; Vázquez, M.; Vavassori, P.J. Coercivity dependence on periodicity of Co and Py antidot arrays. Korean Phys. Soc. 2013, 62, 1521–1524. [Google Scholar] [CrossRef]
- Fischer, U.C.; Zingsheim, H.P. Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 1981, 19, 881–885. [Google Scholar] [CrossRef]
- Plettl, A.; Enderle, F.; Saitner, M.; Manzke, A.; Pfahler, C.; Wiedemann, S.; Ziemann, P. Non-Close-Packed Crystals from Self-Assembled Polystyrene Spheres by Isotropic Plasma Etching: Adding Flexibility to Colloid Lithography. Adv. Funct. Mater. 2009, 19, 3279–3284. [Google Scholar] [CrossRef]
- Merazzo, K.J.; del Real, R.P.; Asenjo, A.; Vázquez, M. Dependence of magnetization process on thickness of Permalloy antidot arrays. J. Appl. Phys. 2011, 109, 07B906. [Google Scholar] [CrossRef]
- Pirota, K.R.; Prieto, P.; Neto, A.M.J.; Sanz, J.M.; Knobel, M.; V’azquez, M. Coercive field behavior of permalloy antidot arrays based on self-assembled template fabrication. J. Magn. Magn. Mater. 2008, 320, e235–e238. [Google Scholar] [CrossRef]
- Martens, S.; Albrecht, O.; Nielsch, K.; Goerlitz, D. Local modes and two magnon scattering in ordered permalloy antidot arrays. J. Appl. Phys. 2009, 105, 07C113. [Google Scholar] [CrossRef]
- Palma, J.L.; Pereira, A.; Álvaro, R.; García-Martín, J.M.; Escrig, J. Magnetic properties of Fe3O4 antidot arrays synthesized by AFIR: Atomic layer deposition, focused ion beam and thermal reduction. Beilstein J. Nanotechnol. 2018, 9, 1728–1734. [Google Scholar] [CrossRef]
- Beron, F.; Pirota, K.R.; Vega, V.; Prida, V.M.; Fernandez, A.; Hernando, B.; Knobel, M. An effective method to probe local magnetostatic properties in a nanometric FePd antidot array. New J. Phys. 2011, 13, 013035. [Google Scholar] [CrossRef]
- Manzin, A.; Bottauscio, O. Micromagnetic modelling of the anisotropy properties of permalloy antidot arrays with hexagonal symmetry. J. Phys. D: Appl. Phys. 2012, 45, 095001. [Google Scholar] [CrossRef]
- Merazzo, K.J.; Leitao, D.C.; Jimenez, E.; Araujo, J.P.; Camarero, J.; del Real, R.P.; Asenjo, A.; Vazquez, M. Geometry-dependent magnetization reversal mechanism in ordered Py antidot arrays. J. Phys. D: Appl. Phys. 2011, 44, 505001. [Google Scholar] [CrossRef]
- Hu, X.K.; Sievers, S.; Mueller, A.; Janke, V.; Schumacher, H.W. Classification of super domains and super domain walls in permalloy antidot lattices. Phys. Rev. B 2011, 84, 024404. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.; Shams, N.N.; Lai, C.H.; Fidler, J.; Suess, D. Co/Pt perpendicular antidot arrays with engineered feature size and magnetic properties fabricated on anodic aluminum oxide templates. Phys. Rev. B 2010, 81, 014418. [Google Scholar] [CrossRef]
- Rodrıguez-Suarez, R.L.; Palma, J.L.; Burgos, E.O.; Michea, S.; Escrig, J.; Denardin, J.C.; Aliaga, C. Ferromagnetic resonance investigation in permalloy magnetic antidot arrays on alumina nanoporous membranes. J. Magn. Magn. Mater. 2014, 350, 88–93. [Google Scholar] [CrossRef]
- Mallick, S.; Bedanta, S. Effect of substrate rotation on domain structure and magnetic relaxation in magnetic antidot lattice arrays. J. Appl. Phys. 2015, 118, 083904. [Google Scholar] [CrossRef]
- Mallick, S.; Bedanta, S. Size and shape dependence study of magnetization reversal in magnetic antidot lattice arrays. J. Magn. Magn. Mater. 2015, 382, 158–164. [Google Scholar] [CrossRef]
- Chowdhury, N.; Mallick, S.; Mallik, S.; Bedanta, S. Study of magnetization relaxation in Co thin films prepared by substrate rotation. Thin Solid Films 2016, 616, 328–334. [Google Scholar] [CrossRef]
- Mallick, S.; Mishra, S.S.; Bedanta, S. Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy. Sci. Rep. 2018, 8, 11648. [Google Scholar] [CrossRef]
- Gräfe, J.; Weigand, M.; Träger, N.; Schütz, G.; Goering, E.J.; Skripnik, M.; Nowak, U.; Haering, F.; Ziemann, P.; Wiedwald, U. Geometric control of the magnetization reversal in antidot lattices with perpendicular magnetic anisotropy. Phys. Rev. B 2016, 93, 104421. [Google Scholar] [CrossRef] [Green Version]
- Tacchi, S.; Madami, M.; Gubbiotti, G.; Carlotti, G.; Adeyeye, A.O.; Neusseret, S.; Botters, B.; Grundler, D. “Angular Dependence of Magnetic Normal Modes in NiFe Antidot Lattices With Different Lattice Symmetry. IEEE Trans. Magn. 2010, 46, 1440–1443. [Google Scholar] [CrossRef]
- Wiedwald, U.; Gräfe, J.; Lebecki, K.M.; Skripnik, M.; Haering, F.; Schütz, G.; Ziemann, P.; Goering, E.; Nowak, U. Magnetic switching of nanoscale antidot lattices. Beilstein J. Nanotechnol. 2016, 7, 733–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michea, S.; Palma, J.L.; Lavín, R.; Briones, J.; Escrig, J.; Denardin, J.C.; Rodríguez-Suárez, R.L. Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder. J. Phys. D Appl. Phys. 2014, 47, 335001. [Google Scholar] [CrossRef] [Green Version]
- Gräfe, J.; Schütz, G.; Goering, E.J. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films. J. Magn. Magn. Mater. 2016, 419, 517–520. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.G.; Seo, M.S.; Jin, X.R.; Lee, S.J.; Lee, Y.P.; Rhee, J.Y.; Kim, K.W. Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry. Appl. Phys. Lett. 2010, 96, 122503. [Google Scholar] [CrossRef]
- Heyderman, L.J.; Nolting, F.; Quitmann, C. X-ray photoemission electron microscopy investigation of magnetic thin film antidot arrays. Appl. Phys. Lett. 2003, 83, 1797. [Google Scholar] [CrossRef] [Green Version]
- Wolff, U. Collective Monte Carlo Updating for Spin Systems. Phys. Rev. Lett. 1989, 62, 361. [Google Scholar] [CrossRef]
- Binder, K. Critical Properties from Monte-Carlo Coarse-Graining and Renormalization. Phys. Rev. Lett. 1981, 47, 693. [Google Scholar] [CrossRef]
- Landau, D.P.; Binder, K. Phase Diagrams and Multicritical Behavior of a Three-Dimensional Anisotropic Heisenberg Anti-ferromagnet. Phys. Rev. B 1978, 17, 2328. [Google Scholar] [CrossRef]
- Nehme, Z.; Labaye, Y.; Hassan, R.S.; Yaacoub, N.; Greneche, J.-M. Modeling of hysteresis loops by Monte Carlo simulation. AIP Adv. 2015, 5, 127124. [Google Scholar] [CrossRef] [Green Version]
- Cao Long, V.; Saraç, U.; Baykul, M.C.; Trong, L.D.; Ţălu, Ş.; Nguyen Trong, D. Electrochemical Deposition of Fe–Co–Ni Samples with Different Co Contents and Characterization of Their Microstructural and Magnetic Properties. Coatings 2022, 12, 346. [Google Scholar] [CrossRef]
- Saraç, U.; Trong, D.N.; Baykul, M.C.; Long, V.C.; Ţălu, Ş. Tuning structural properties, morphology and magnetic characteristics of nanostructured Ni-Co-Fe/ITO ternary alloys by galvanostatic pretreatment process. Microsc. Res. Tech. 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belim, S.V.; Belim, S.S.; Tikhomirov, I.V.; Bychkov, I.V. Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice. Coatings 2022, 12, 1526. https://doi.org/10.3390/coatings12101526
Belim SV, Belim SS, Tikhomirov IV, Bychkov IV. Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice. Coatings. 2022; 12(10):1526. https://doi.org/10.3390/coatings12101526
Chicago/Turabian StyleBelim, Sergey V., Sofya S. Belim, Ilya V. Tikhomirov, and Igor V. Bychkov. 2022. "Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice" Coatings 12, no. 10: 1526. https://doi.org/10.3390/coatings12101526
APA StyleBelim, S. V., Belim, S. S., Tikhomirov, I. V., & Bychkov, I. V. (2022). Computer Simulation of Phase Transitions in Thin Films with an Antidote Lattice. Coatings, 12(10), 1526. https://doi.org/10.3390/coatings12101526