Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700431. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Sun, X.; Yu, X.; Weng, W.; Yang, J.; Zhou, D.; Xiao, R.; Chen, L.; Yao, X. Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. Chem. Eng. J. 2021, 420, 127692. [Google Scholar] [CrossRef]
- Wang, Y.; Richards, W.D.; Ong, S.P.; Miara, L.J.; Kim, J.C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 1026–1031. [Google Scholar] [CrossRef]
- Gandi, S.S.; Gandi, S.; Madduluri, V.R.; Katari, N.K.; Dutta, D.P.; Ravuri, B.R. Na3+x[CrxTi2−x(PO4)3] glass-ceramic electrolyte: Ionic conductivity and structural correlations for different heat treating temperatures and time schedules. Ionics 2019, 25, 4179–4188. [Google Scholar] [CrossRef]
- Leng, H.; Nie, J.; Luo, J. Combining cold sintering and Bi2O3-Activated liquid-phase sintering to fabricate high-conductivity Mg-doped NASICON at reduced temperatures. J. Mater. 2019, 5, 237–246. [Google Scholar] [CrossRef]
- Hong, H.Y.P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 1976, 11, 173–182. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Hong, H.Y.P.; Kafalas, J.A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220. [Google Scholar] [CrossRef]
- Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030. [Google Scholar] [CrossRef]
- Sundar, G.S.; Suman, G.; Kumar, K.N.; Dutta, D.P.; Rao, R.B. Investigation on the applicability of high Na-ion conducting Na3+x[ZrxSc2-x(PO4)3] glass-ceramic electrolyte for use in safer Na-ion batteries. J. Phys. Chem. Solids 2019, 126, 209–218. [Google Scholar] [CrossRef]
- Lu, Y.; Alonso, J.A.; Yi, Q.; Lu, L.; Wang, Z.L.; Sun, C. A High-Performance Monolithic Solid-State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte. Adv. Energy Mater. 2019, 9, 1901205. [Google Scholar] [CrossRef]
- Yang, J.; Wan, H.-L.; Zhang, Z.-H.; Liu, G.-Z.; Xu, X.-X.; Hu, Y.-S.; Yao, X.-Y. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018, 37, 480–487. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y.S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L.; et al. A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life. Adv. Energy Mater. 2017, 7, 1601196. [Google Scholar] [CrossRef]
- Miao, R.J.; Cao, X.G.; Wang, W.G.; Zhang, H.Y. Influence of Bi2O3 additive on the electrochemical performance of Na3.1Y0.1Zr1.9Si2PO12 inorganic solid electrolyte. Ceram. Int. 2021, 47, 17455–17462. [Google Scholar] [CrossRef]
- Chen, D.; Luo, F.; Zhou, W.; Zhu, D. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity. J. Alloy. Compd. 2018, 757, 348–355. [Google Scholar] [CrossRef]
- Khakpour, Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2−xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity. Electrochim. Acta 2016, 196, 337–347. [Google Scholar] [CrossRef]
- Jolley, A.G.; Cohn, G.; Hitz, G.T.; Wachsman, E.D. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12. Ionics 2015, 21, 3031–3038. [Google Scholar] [CrossRef]
- Huang, C.C.; Yang, G.M.; Yu, W.H.; Xue, C.; Zhai, Y.F.; Tang, W.P.; Hu, N.; Wen, Z.Y.; Lu, L.; Song, S.F. Gallium-substituted Nasicon Na3Zr2Si2PO12 solid electrolytes. J. Alloy. Compd. 2021, 855, 157501. [Google Scholar] [CrossRef]
- Ma, Q.L.; Guin, M.; Naqash, S.; Tsai, C.L.; Tietz, F.; Guillon, O. Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution Assisted Solid-State Reaction Method as Sodium-Ion Conductors. Chem. Mater. 2016, 28, 4821–4828. [Google Scholar] [CrossRef]
- Song, S.F.; Duong, H.M.; Korsunsky, A.M.; Hu, N.; Lu, L. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Wang, X.; Mei, W.; Chen, J.; Wang, D.; Mao, Z. Rare Earth Oxide-Assisted Sintered NASICON Electrolyte Composed of a Phosphate Grain Boundary Phase with Low Electronic Conductivity. ACS Appl. Energy Mater. 2022, 5, 777–783. [Google Scholar] [CrossRef]
- Thirupathi, R.; Omar, S. A Strategic Co-doping Approach Using Sc3+ and Ce4+ toward Enhanced Conductivity in NASICON-Type Na3Zr2Si2PO12. J. Phys. Chem. C 2021, 125, 27723–27735. [Google Scholar] [CrossRef]
- Heo, E.; Wang, J.E.; Yun, J.H.; Kim, J.-H.; Kim, D.J.; Kim, D.K. Improving Room Temperature Ionic Conductivity of Na3–xKxZr2Si2PO12 Solid-Electrolytes: Effects of Potassium Substitution. Inorg. Chem. 2021, 60, 11147–11153. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.L.; Tsai, C.L.; Wei, X.K.; Heggen, M.; Tietz, F.; Irvine, J.T.S. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells. J. Mater. Chem. A 2019, 7, 7766–7776. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Yang, J.; Liu, G.; Avdeev, M.; Yao, X. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries. Mater. Today Energy 2021, 20, 100691. [Google Scholar] [CrossRef]
- Oh, J.S.; He, L.; Plewa, A.; Morita, M.; Zhao, Y.; Sakamoto, T.; Song, X.; Zhai, W.; Zeng, K.; Lu, L. Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering. ACS Appl. Mater. Interfaces 2019, 11, 40125–40133. [Google Scholar] [CrossRef]
- Shao, Y.J.; Zhong, G.M.; Lu, Y.X.; Liu, L.L.; Zhao, C.L.; Zhang, Q.Q.; Hu, Y.S.; Yang, Y.; Chen, L.Q. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Mater. 2019, 23, 514–521. [Google Scholar] [CrossRef]
- Diouri, M.; Sadel, A.; Zahir, M.; Drache, M.; Conflant, P.; Wignacourt, J.P.; Boivin, J.C. Na3Bi(PO4)2 type solid solutions; investigation of structural and electrical properties. J. Alloy. Compd. 1992, 188, 206–210. [Google Scholar] [CrossRef]
- Cooper, K.R. Progress Toward Accurate Through-Plane Ion Transport Resistance Measurement of Thin Solid Electrolytes. J. Electrochem. Soc. 2010, 157, B1731. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Z.; Tang, Y.; Chen, J.; Wang, D.; Mao, Z. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries. J. Power Sources 2021, 481, 228924. [Google Scholar] [CrossRef]
- Sun, F.; Xiang, Y.; Sun, Q.; Zhong, G.; Banis, M.N.; Li, W.; Liu, Y.; Luo, J.; Li, R.; Fu, R.; et al. Insight into Ion Diffusion Dynamics/Mechanisms and Electronic Structure of Highly Conductive Sodium-Rich Na3+xLaxZr2−xSi2PO12 (0 ≤ x ≤ 0.5) Solid-State Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 13132–13138. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, R.O.; Figueiredo, F.; Marques, F.M.B.; Franco, J.I. Reaction of NASICON with water. Solid State Ion. 2001, 139, 309–314. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.; Chen, Y.; Ma, X. Enhanced ionic conductivity of an F−-assisted Na3Zr2Si2PO12 solid electrolyte for solid-state sodium batteries. J. Mater. Chem. A 2020, 8, 12594–12602. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, C.-Z.; Yuan, H.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies. Adv. Funct. Mater. 2021, 31, 2009925. [Google Scholar] [CrossRef]
- Fang, W.; Fan, L.; Zhang, Y.; Zhang, Q.; Yin, Y.; Zhang, N.; Sun, K. Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries. Ceram. Int. 2017, 43, 8819–8823. [Google Scholar] [CrossRef]
- Xu, R.; Kinderman, R.; Van der Lugt, W. Electrical resistivities of liquid Na-Bi and Rb-Bi alloys. J. Phys. Condens. Matter 1991, 3, 127–133. [Google Scholar] [CrossRef]
Components | Ionic Conductivity (S cm−1) | Reference |
---|---|---|
Na3Zr1.9Ca0.1Si2PO12 | 1.67 × 10−3 | [11] |
Na3Zr1.7La0.3Si2PO12 | 3.4 × 10−3 | [13] |
Na3.1Y0.1Zr1.9Si2PO12 + 1 wt.% Bi2O3 | 1.21 × 10−3 | [14] |
Na3Zr1.9Nb0.1Si2PO12 | 2.11 × 10−4 | [15] |
Na3Zr1.9Ti0.1Si2PO12 | 5.97 × 10−4 | [15] |
Na3Zr1.8Zn0.2Si2PO12 | 2.50 × 10−3 | [15] |
Na3Zr1.9Yb0.1Si2PO12 | 1.7 × 10−4 | [16] |
Na3Zr1.9Gd0.1Si2PO12 | 6.0 × 10−4 | [16] |
Na3Zr1.9Ce0.1Si2PO12 | 9.0 × 10−4 | [16] |
Na3Zr1.9Al0.1Si2PO12 | 4.39 × 10−4 | [17] |
Na3Zr1.9Fe0.1Si2PO12 | 7.53 × 10−4 | [17] |
Na3Zr1.9Co0.1Si2PO12 | 1.55 × 10−4 | [17] |
Na3Zr1.9Ni0.1Si2PO12 | 6.18 × 10−4 | [17] |
Na3Zr1.9Ga0.1Si2PO12 | 1.06 × 10−3 | [18] |
Na3.4Zr1.6Sc0.4Si2PO12 | 4.0 × 10−3 | [19] |
Na3.1Zr1.95Mg0.05Si2PO12 | 3.5 × 10−3 | [20] |
Na3.2Zr1.8Sm0.2Si2PO12 | 1.36 × 10−3 | [21] |
Na3.3Zr1.7Ho0.3Si2PO12 | 1.07 × 10−3 | [21] |
Na3.33Ce0.02Sc0.33Zr1.65Si2PO12 | 2.44 × 10−3 | [22] |
Na2.9K0.1Zr2Si2PO12 | 7.734 × 10−4 | [23] |
Na3.4Zr2Si2.4P0.6O12 | 5.5 × 10−3 | [24] |
Na3.4Zr1.9Mg0.1Si2.2P0.8O12 | 3.6 × 10−3 | [25] |
Na3Zr2Si2PO12 + 5 wt.% Na2SiO3 | 1.45 × 10−3 | [26] |
Na3.2Zr2Si2.2P0.8O12 + 0.5 NaF | 3.6 × 10−3 | [27] |
NZSP-xBi | ρ (g cm−3) | Rg (Ω) | Rgb (Ω) | σb (S cm−1) | σgb (S cm−1) | σtotal (S cm−1) |
---|---|---|---|---|---|---|
x = 0 | 2.89 | 95.0 | 146.0 | 7.20 × 10−4 | 4.69 × 10−4 | 2.84 × 10−4 |
x = 0.1 | 3.07 | 40.0 | 46.0 | 1.95 × 10−3 | 1.69 × 10−3 | 9.04 × 10−4 |
x = 0.2 | 3.10 | 38.4 | 23.7 | 2.05 × 10−3 | 3.32 × 10−3 | 1.27 × 10−3 |
x = 0.3 | 3.08 | 42.5 | 44.5 | 2.03 × 10−3 | 1.94 × 10−3 | 9.92 × 10−4 |
x = 0.4 | 3.02 | 50.3 | 54.7 | 1.45 × 10−3 | 1.33 × 10−3 | 6.92 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, S.; Mei, W.; Xing, X.; Zeng, Y.; Mao, Z.; Wang, D.; Chen, J.; Dong, C. Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries. Coatings 2022, 12, 1774. https://doi.org/10.3390/coatings12111774
Cen S, Mei W, Xing X, Zeng Y, Mao Z, Wang D, Chen J, Dong C. Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries. Coatings. 2022; 12(11):1774. https://doi.org/10.3390/coatings12111774
Chicago/Turabian StyleCen, Shangxu, Wentao Mei, Xiangyuan Xing, Yiwei Zeng, Zhiyong Mao, Dajian Wang, Jingjing Chen, and Chenlong Dong. 2022. "Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries" Coatings 12, no. 11: 1774. https://doi.org/10.3390/coatings12111774
APA StyleCen, S., Mei, W., Xing, X., Zeng, Y., Mao, Z., Wang, D., Chen, J., & Dong, C. (2022). Bi2O3-Assisted Sintering of Na3Zr2Si2PO12 Electrolyte for Solid-State Sodium Metal Batteries. Coatings, 12(11), 1774. https://doi.org/10.3390/coatings12111774