Cold Plasma Technology in Food Packaging
Abstract
:1. Introduction
2. CP Technology in the Food Industry
- Quasiequilibrium plasma (50–100 °C), where the reactive species are in local thermodynamic equilibrium
- Nonequilibrium plasma (<60 °C) or CP where the heavier species present have a lower temperature than the electrons.
3. CP in Food Packaging
3.1. Impact of CP on Food Packaging Surface Sterilisation
3.2. Impact of CP on Modification of Food Packaging Polymers
3.3. Impact of CP on Biopolymer-Based Packaging Materials
Number | Packaging Material | CP Source | Treatment Times | Properties of Packaging Material | References |
---|---|---|---|---|---|
1 | Zein-chitosan | DBD plasma reactor Treatment power: 100 W | 30, 60, 90, 120, 150 s |
| [55] |
2 | Fish myofibrillar protein | Alternating current glow discharge plasma Power supply: 0–15 kV, 60 Hz | 2 or 5 min |
| [59] |
3 | Pectin-clove essential oil | DBD system, at a frequency of 10 kHz and a voltage level of 7 kV for | 5 min |
| [57] |
4 | Starch-chitosan | Radio frequency (20 kHz) plasma cleaner system | 4, 8 and 12 min |
| [58] |
5 | PCL-zein | ACP | 30 s at 35, 50, 65, 80, or 100 V, and 65 V at 5, 15, 30, 45, or 60 s |
| [60] |
6 | Corn starch (28% amylose) | DBD | 20 kV, 200 Hz, 10, 15, and 20 min |
| [61] |
7 | Corn Starch-poly (ε-caprolactone Starch | Radio-frequency generated plasma reactor | 40 W, 13.56 MHz, 25 min |
| [62] |
8 | High amylose corn starch | DBD plasma system | 80 kV, 5 min |
| [63] |
9 | Zein films (pristine) | DBD50 Plasma Reactor Power: 65 V Outer electrodes diameter = 50 mm | 65 V, for 5, 15, 30, 45, and 60 s |
| [43] |
10 | Bovine Gelatin films | DBD plasma system | 60, 70, and 80 kV for 1, 2, 3, 4, and 5 min |
| [63] |
11 | Gelatin films | DBD (atmospheric pressure by air, N2, O2, Ar, and Ar ethanol gases) | 19W (Air), 16.5W (Ar), 30W (N2), 27W (O2), 19.5W (ethanolAr) for 15 min |
| [64] |
12 | Polycaprolactone-zein | ACP | 65 V for 5, 15, 30, 45 and 60 s |
| [60] |
13 | Zein-PLA | DBD CP system | 60 V for 60 and 120 s |
| [65] |
4. Effect of CP on Packaging Properties
4.1. Surface Roughness (SR)
4.2. Contact Angle (CA)
4.3. Mechanical Properties
4.4. Thermal Properties
4.5. Water Barrier Properties
4.6. Oxygen Permeability (OP)
4.7. Antimicrobial Properties of CP Treated Films
4.8. Biodegradability
5. Safety of CP for Food Packaging Applications
6. Disadvantages of CP Technology in Food Packaging Applications
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
ACP | Atmospheric-pressure cold plasma |
ADCP | Atmospheric dielectric barrier discharge cold plasma |
CA | Contact Angle |
CP | Cold plasma |
DBD | Dielectric barrier discharge |
EAB | Elongation at break |
LDPE | Low density polyethylene |
OP | Oxygen Permeability |
OTR | oxygen transmission rate |
PCL | Polycaprolactone |
PE | polyethylene |
PET | Polyethylene terephthalate |
PLA | Polylactic acid |
PP | polypropylene |
SR | Surface Roughness |
Tdeg | Thermal Degradation |
Tm | Melting Temperature |
TS | Tensile strength |
WVP | Water vapour permeability |
WVTR | Water Vapour Transmission Rate |
References
- Knorr, D.; Augustin, M.A. Food Processing Needs, Advantages and Misconceptions. Trends Food Sci. Technol. 2021, 108, 103–110. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technology: Principles and Practice, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 1–913. [Google Scholar] [CrossRef]
- Zhuang, H.; Rothrock, M.J.; Hiett, K.L.; Lawrence, K.C.; Gamble, G.R.; Bowker, B.C.; Keener, K.M.; Šerá, B. In-Package Air Cold Plasma Treatment on Chicken Breast Meat: Treatment Time Effect. J. Food Qual. 2019, 2019, 1s837351. [Google Scholar] [CrossRef] [Green Version]
- Khouryieh, H.A. Novel and Emerging Technologies Used by the U.S. Food Processing Industry. Innov. Food Sci. Emerg. Technol. 2021, 67, 102559. [Google Scholar] [CrossRef]
- Ganesan, A.R.; Tiwari, U.; Ezhilarasi, P.N.; Rajauria, G. Application of Cold Plasma on Food Matrices: A Review on Current and Future Prospects. J. Food Process. Preserv. 2021, 45, e15070. [Google Scholar] [CrossRef]
- Ucar, Y.; Ceylan, Z.; Durmus, M.; Tomar, O.; Cetinkaya, T. Application of Cold Plasma Technology in the Food Industry and Its Combination with Other Emerging Technologies. Trends Food Sci. Technol. 2021, 114, 355–371. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Neill, L.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Physicochemical Characterisation of Plasma-Treated Sodium Caseinate Film. Food Res. Int. 2014, 66, 438–444. [Google Scholar] [CrossRef]
- Wanigasekara, J.; Barcia, C.; Cullen, P.J.; Tiwari, B.; Curtin, J.F. Plasma induced reactive oxygen species-dependent cytotoxicity in glioblastoma 3D tumourspheres. Plasma Process. Polym. 2022, 19, e2100157. [Google Scholar] [CrossRef]
- Hoque, M.; McDonagh, C.; Tiwari, B.K.; Kerry, J.P.; Pathania, S. Effect of Cold Plasma Treatment on the Packaging Properties of Biopolymer-Based Films: A Review. Appl. Sci. 2022, 12, 1346. [Google Scholar] [CrossRef]
- Bahrami, R.; Zibaei, R.; Hashami, Z.; Hasanvand, S.; Garavand, F.; Rouhi, M.; Jafari, S.M.; Mohammadi, R. Modification and Improvement of Biodegradable Packaging Films by Cold Plasma; a Critical Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 1936–1950. [Google Scholar] [CrossRef]
- Fazeli, M.; Florez, J.P.; Simão, R.A. Improvement in Adhesion of Cellulose Fibers to the Thermoplastic Starch Matrix by Plasma Treatment Modification. Compos. Part B Eng. 2019, 163, 207–216. [Google Scholar] [CrossRef]
- Laroque, D.A.; Seó, S.T.; Valencia, G.A.; Laurindo, J.B.; Carciofi, B.A.M. Cold Plasma in Food Processing: Design, Mechanisms, and Application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Boehm, D.; Cullen, P.J.; Keener, K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol. 2018, 36, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yodpitak, S.; Mahatheeranont, S.; Boonyawan, D.; Sookwong, P.; Roytrakul, S.; Norkaew, O. Cold Plasma Treatment to Improve Germination and Enhance the Bioactive Phytochemical Content of Germinated Brown Rice. Food Chem. 2019, 289, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Nikmaram, N.; Keener, K.M. The Effects of Cold Plasma Technology on Physical, Nutritional, and Sensory Properties of Milk and Milk Products. LWT 2022, 154, 112729. [Google Scholar] [CrossRef]
- Kasih, T.P.; Mangindaan, D.; Ningrum, A.S.; Sebastian, C.; Widyaningrum, D. Bacterial Inactivation by Using Non Thermal Argon Plasma Jet and Its Application Study for Non Thermal Raw Milk Processing. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Banten, Indonesia, 10–11 November 2020; Volume 794, p. 012104. [Google Scholar] [CrossRef]
- Dash, S.; Jaganmohan, R. Stability and Shelf-Life of Plasma Bubbling Treated Cow Milk. Int. J. Life Sci. Pharma Res. 2022, 12, L111–L120. [Google Scholar] [CrossRef]
- Starič, P.; Vogel-Mikuš, K.; Mozetič, M.; Junkar, I. Effects of Nonthermal Plasma on Morphology, Genetics and Physiology of Seeds: A Review. Plants 2020, 9, 1736. [Google Scholar] [CrossRef]
- Mandal, R.; Singh, A.; Pratap Singh, A. Recent Developments in Cold Plasma Decontamination Technology in the Food Industry. Trends Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Kang, J.H.; Jeon, Y.J.; Min, S.C. Effects of Packaging Parameters on the Microbial Decontamination of Korean Steamed Rice Cakes Using In-Package Atmospheric Cold Plasma Treatment. Food Sci. Biotechnol. 2021, 30, 1535–1542. [Google Scholar] [CrossRef]
- Kim, Y.E.; Min, S.C. Inactivation of Salmonella in Ready-to-Eat Cabbage Slices Packaged in a Plastic Container Using an Integrated in-Package Treatment of Hydrogen Peroxide and Cold Plasma. Food Control 2021, 130, 108392. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, N.; Min, S.C. Inactivation of Salmonella in Steamed Fish Cake Using an In-Package Combined Treatment of Cold Plasma and Ultraviolet-Activated Zinc Oxide. Food Control 2022, 135, 108772. [Google Scholar] [CrossRef]
- Zhu, H.; Han, Z.; Cheng, J.H.; Sun, D.W. Modification of Cellulose from Sugarcane (Saccharum officinarum) Bagasse Pulp by Cold Plasma: Dissolution, Structure and Surface Chemistry Analysis. Food Chem. 2022, 374, 131675. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Sun, H.; Yang, X.; Cui, D.; Wang, Y.; Zhuang, J.; Wang, X.; Ma, R.; Jiao, Z. Potential Use of Atmospheric Cold Plasma for Postharvest Preservation of Blueberries. Postharvest Biol. Technol. 2021, 179, 111564. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Neill, L.; Jiménez, A.; Bourke, P.; Cullen, P.J. Characterisation of Polylactic Acid Films for Food Packaging as Affected by Dielectric Barrier Discharge Atmospheric Plasma. Innov. Food Sci. Emerg. Technol. 2014, 21, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Muranyi, P.; Wunderlich, J.; Langowski, H.C. Modification of Bacterial Structures by a Low-Temperature Gas Plasma and Influence on Packaging Material. J. Appl. Microbiol. 2010, 109, 1875–1885. [Google Scholar] [CrossRef]
- Lee, T.; Puligundla, P.; Mok, C. Inactivation of Foodborne Pathogens on the Surfaces of Different Packaging Materials Using Low-Pressure Air Plasma. Food Control 2015, 51, 149–155. [Google Scholar] [CrossRef]
- Yang, L.; Chen, J.; Gao, J.; Guo, Y. Plasma Sterilisation Using the RF Glow Discharge. Appl. Surf. Sci. 2009, 255, 8960–8964. [Google Scholar] [CrossRef]
- Kulawik, P.; Alvarez, C.; Cullen, P.J.; Aznar-Roca, R.; Mullen, A.M.; Tiwari, B. The Effect of Non-Thermal Plasma on the Lipid Oxidation and Microbiological Quality of Sushi. Innov. Food Sci. Emerg. Technol. 2018, 45, 412–417. [Google Scholar] [CrossRef]
- Yadav, B.; Spinelli, A.C.; Misra, N.N.; Tsui, Y.Y.; McMullen, L.M.; Roopesh, M.S. Effect of In-Package Atmospheric Cold Plasma Discharge on Microbial Safety and Quality of Ready-to-Eat Ham in Modified Atmospheric Packaging during Storage. J. Food Sci. 2020, 85, 1203–1212. [Google Scholar] [CrossRef]
- Capelli, F.; Tappi, S.; Gritti, T.; De Aguiar Saldanha Pinheiro, A.C.; Laurita, R.; Tylewicz, U.; Spataro, F.; Braschi, G.; Lanciotti, R.; Galindo, F.G.; et al. Decontamination of Food Packages from SARS-CoV-2 RNA with a Cold Plasma-Assisted System. Appl. Sci. 2021, 11, 4177. [Google Scholar] [CrossRef]
- Roh, S.H.; Lee, S.Y.; Park, H.H.; Lee, E.S.; Min, S.C. Effects of the Treatment Parameters on the Efficacy of the Inactivation of Salmonella Contaminating Boiled Chicken Breast by In-Package Atmospheric Cold Plasma Treatment. Int. J. Food Microbiol. 2019, 293, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Jawaid, M.; Lee, C.H. Effect of Modified Tapioca Starch on Mechanical, Thermal, and Morphological Properties of PBS Blends for Food Packaging. Polymers 2018, 10, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klockow, P.A.; Keener, K.M. Safety and Quality Assessment of Packaged Spinach Treated with a Novel Ozone-Generation System. LWT Food Sci. Technol. 2009, 42, 1047–1053. [Google Scholar] [CrossRef]
- Hertrich, S.M.; Boyd, G.; Sites, J.; Niemira, B.A. Cold Plasma Inactivation of Salmonella in Prepackaged, Mixed Salads Is Influenced by Cross-Contamination Sequence. J. Food Prot. 2017, 80, 2132–2136. [Google Scholar] [CrossRef]
- Min, S.C.; Roh, S.H.; Boyd, G.; Sites, J.E.; Uknalis, J.; Fan, X.; Niemira, B.A. Inactivation of Escherichia coli O157:H7 and Aerobic Microorganisms in Romaine Lettuce Packaged in a Commercial Polyethylene Terephthalate Container Using Atmospheric Cold Plasma. J. Food Prot. 2017, 80, 35–43. [Google Scholar] [CrossRef]
- Wan, Z.; Chen, Y.; Pankaj, S.K.; Keener, K.M. High Voltage Atmospheric Cold Plasma Treatment of Refrigerated Chicken Eggs for Control of Salmonella Enteritidis Contamination on Egg Shell. LWT Food Sci. Technol. 2017, 76, 124–130. [Google Scholar] [CrossRef]
- Chiper, A.S.; Chen, W.; Mejlholm, O.; Dalgaard, P.; Stamate, E. Atmospheric Pressure Plasma Produced inside a Closed Package by a Dielectric Barrier Discharge in Ar/CO2 for Bacterial Inactivation of Biological Samples. Plasma Sources Sci. Technol. 2011, 20, 025008. [Google Scholar] [CrossRef]
- Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Microbial Safety and Quality Attributes of Milk Following Treatment with Atmospheric Pressure Encapsulated Dielectric Barrier Discharge Plasma. Food Control 2015, 47, 451–456. [Google Scholar] [CrossRef]
- Yong, H.I.; Kim, H.J.; Park, S.; Alahakoon, A.U.; Kim, K.; Choe, W.; Jo, C. Evaluation of Pathogen Inactivation on Sliced Cheese Induced by Encapsulated Atmospheric Pressure Dielectric Barrier Discharge Plasma. Food Microbiol. 2015, 46, 46–50. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Kim, H.J.; Yong, H.I.; Park, S.; Kim, K.; Choe, W.; Jo, C. Flexible Thin-Layer Dielectric Barrier Discharge Plasma Treatment of Pork Butt and Beef Loin: Effects on Pathogen Inactivation and Meat-Quality Attributes. Food Microbiol. 2015, 46, 51–57. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(Ethylene Terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Guo, P.; Chen, Y.; Chen, G.Y.; Ji, H.; Ran, Y.; Li, S.H.; Chen, Y. Surface Modification via Atmospheric Cold Plasma (ACP): Improved Functional Properties and Characterisation of Zein Film. Ind. Crops Prod. 2018, 115, 124–133. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; Bourke, P.; Cullen, P.J. Zein Film: Effects of Dielectric Barrier Discharge Atmospheric Cold Plasma. J. Appl. Polym. Sci. 2014, 131, 40803. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Guo, M.; Xu, Z.; Wu, M. Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment. Coatings 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Moradi, E.; Moosavi, M.H.; Hosseini, S.M.; Mirmoghtadaie, L.; Moslehishad, M.; Khani, M.R.; Jannatyha, N.; Shojaee-Aliabadi, S. Prolonging Shelf Life of Chicken Breast Fillets by Using Plasma-Improved Chitosan/Low Density Polyethylene Bilayer Film Containing Summer Savory Essential Oil. Int. J. Biol. Macromol. 2020, 156, 321–328. [Google Scholar] [CrossRef]
- Wong, L.W.; Hou, C.Y.; Hsieh, C.C.; Chang, C.K.; Wu, Y.S.; Hsieh, C.W. Preparation of Antimicrobial Active Packaging Film by Capacitively Coupled Plasma Treatment. LWT 2020, 117, 108612. [Google Scholar] [CrossRef]
- Pérez-Huertas, S.; Terpiłowski, K.; Tomczyńska-Mleko, M.; Mleko, S. Surface Modification of Albumin/Gelatin Films Gelled on Low-Temperature Plasma-Treated Polyethylene Terephthalate Plates. Plasma Process. Polym. 2020, 17, 1900171. [Google Scholar] [CrossRef]
- Bang, I.H.; Lee, E.S.; Lee, H.S.; Min, S.C. Microbial Decontamination System Combining Antimicrobial Solution Washing and Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment for Preservation of Mandarins. Postharvest Biol. Technol. 2020, 162, 111102. [Google Scholar] [CrossRef]
- Sant’Ana, P.L.; Ribeiro Bortoleto, J.R.; da Cruz, N.C.; Rangel, E.C.; Durrant, S.F.; Costa Botti, L.M.; Rodrigues dos Anjos, C.A. Surface Properties of Low-Density Polyethylene Treated by Plasma Immersion Ion Implantation for Food Packaging. Rev. Bras. Apl. Vácuo 2020, 39, 14–23. [Google Scholar] [CrossRef]
- Sandanuwan, T.; Hendeniya, N.; Attygalle, D.; Amarasinghe, D.A.S.; Weragoda, S.C.; Samarasekara, A.M.P.B. Atmospheric Cold Plasma to Improve Printability of Polyethylene Terephthalate. In Proceedings of the MERCon 2021-7th International Multidisciplinary Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 27–29 July 2021; pp. 654–658. [Google Scholar] [CrossRef]
- Kim, S.Y.; Bang, I.H.; Min, S.C. Effects of Packaging Parameters on the Inactivation of Salmonella Contaminating Mixed Vegetables in Plastic Packages Using Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment. J. Food Eng. 2019, 242, 55–67. [Google Scholar] [CrossRef]
- Misra, N.N.; Yepez, X.; Xu, L.; Keener, K. In-Package Cold Plasma Technologies. J. Food Eng. 2019, 244, 21–31. [Google Scholar] [CrossRef]
- Hu, S.; Li, P.; Wei, Z.; Wang, J.; Wang, H.; Wang, Z. Antimicrobial Activity of Nisin-Coated Polylactic Acid Film Facilitated by Cold Plasma Treatment. J. Appl. Polym. Sci. 2018, 135, 46844. [Google Scholar] [CrossRef]
- Chen, G.; Dong, S.; Zhao, S.; Li, S.; Chen, Y. Improving Functional Properties of Zein Film via Compositing with Chitosan and Cold Plasma Treatment. Ind. Crops Prod. 2019, 129, 318–326. [Google Scholar] [CrossRef]
- Dong, S.; Guo, P.; Chen, G.-Y.; Jin, N.; Chen, Y. Study on the Atmospheric Cold Plasma (ACP) Treatment of Zein Film: Surface Properties and Cytocompatibility. Int. J. Biol. Macromol. 2020, 153, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Jahromi, M.; Niakousari, M.; Golmakani, M.T. Fabrication and Characterisation of Pectin Films Incorporated with Clove Essential Oil Emulsions Stabilised by Modified Sodium Caseinate. Food Packag. Shelf Life 2022, 32, 100835. [Google Scholar] [CrossRef]
- Sheikhi, Z.; Mirmoghtadaie, L.; Abdolmaleki, K.; Khani, M.R.; Farhoodi, M.; Moradi, E.; Shokri, B.; Shojaee-Aliabadi, S. Characterisation of Physicochemical and Antimicrobial Properties of Plasma-Treated Starch/Chitosan Composite Film. Packag. Technol. Sci. 2021, 34, 385–392. [Google Scholar] [CrossRef]
- Romani, V.P.; Olsen, B.; Collares, M.P.; Oliveira JR, M.; Prentice-Hernández, C.; Martins, V.G. Improvement of Fish Protein Films Properties for Food Packaging through Glow Discharge Plasma Application. Food Hydrocoll. 2019, 87, 970–976. [Google Scholar] [CrossRef]
- Dong, S.; Li, X.-Y.; Guo, P.; Chen, Y.; Li, H.-J. Preparation and Characterisation of PCL-Grafted Zein Film via Atmospheric-Pressure Cold Plasma Pretreatment. Plasma Process. Polym. 2021, 18, e2000242. [Google Scholar] [CrossRef]
- Goiana, M.L.; de Brito, E.S.; Filho, E.G.A.; de Castro Miguel, E.; Fernandes, F.A.N.; de Azeredo, H.M.C.; de Freitas Rosa, M. Corn Starch Based Films Treated by Dielectric Barrier Discharge Plasma. Int. J. Biol. Macromol. 2021, 183, 2009–2016. [Google Scholar] [CrossRef]
- Arolkar, G.A.; Salgo, M.J.; Kelkar-Mane, V.; Deshmukh, R.R. The Study of Air-Plasma Treatment on Corn Starch/Poly (ε-Caprolactone) Films. Polym. Degrad. Stab. 2015, 120, 262–272. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Neill, L.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Characterisation of Dielectric Barrier Discharge Atmospheric Air Cold Plasma Treated Gelatin Films. Food Packag. Shelf Life 2015, 6, 61–67. [Google Scholar] [CrossRef]
- Ledari, S.A.; Milani, J.M.; Lanbar, F.S. Improving Gelatin-Based Emulsion Films with Cold Plasma Using Different Gases. Food Sci. Nutr. 2020, 8, 6487–6496. [Google Scholar] [CrossRef]
- Chen, G.; Chen, Y.; Jin, N.; Li, J.; Dong, S.; Li, S.; Zhang, Z.; Chen, Y. Zein Films with Porous Polylactic Acid Coatings via Cold Plasma Pre-Treatment. Ind. Crops Prod. 2020, 150, 112382. [Google Scholar] [CrossRef]
- Izdebska-Podsiadły, J. Effect of Plasma Surface Modification on Print Quality of Biodegradable PLA Films. Appl. Sci. 2021, 11, 8245. [Google Scholar] [CrossRef]
- Song, A.Y.; Oh, Y.A.; Roh, S.H.; Kim, J.H.; Min, S.C. Cold Oxygen Plasma Treatments for the Improvement of the Physicochemical and Biodegradable Properties of Polylactic Acid Films for Food Packaging. J. Food Sci. 2016, 81, E86–E96. [Google Scholar] [CrossRef]
- Moosavi, M.H.; Khani, M.R.; Shokri, B.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Modifications of Protein-Based Films Using Cold Plasma. Int. J. Biol. Macromol. 2020, 142, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Pankaj, S.K.; Bueno-Ferrer, C.; O’Neill, L.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Characterisation of Dielectric Barrier Discharge Atmospheric Air Plasma Treated Chitosan Films. J. Food Process. Preserv. 2017, 41, e12889. [Google Scholar] [CrossRef]
- Loke, X.J.; Chang, C.K.; Hou, C.Y.; Cheng, K.C.; Hsieh, C.W. Plasma-Treated Polyethylene Coated with Polysaccharide and Protein Containing Cinnamaldehyde for Active Packaging Films and Applications on Tilapia (Orechromis niloticus) Fillet Preservation. Food Control 2021, 125, 108016. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X. An Improved Design for Passive Micromixer Based on Topology Optimisation Method. Chem. Phys. Lett. 2019, 734, 136706. [Google Scholar] [CrossRef]
- Oh, Y.A.; Roh, S.H.; Min, S.C. Cold Plasma Treatments for Improvement of the Applicability of Defatted Soybean Meal-Based Edible Film in Food Packaging. Food Hydrocoll. 2016, 58, 150–159. [Google Scholar] [CrossRef]
- Mollakhalili-Meybodi, N.; Yousefi, M.; Nematollahi, A.; Khorshidian, N. Effect of Atmospheric Cold Plasma Treatment on Technological and Nutrition Functionality of Protein in Foods. Eur. Food Res. Technol. 2021, 247, 1579–1594. [Google Scholar] [CrossRef]
- Heslin, C.; Boehm, D.; Gilmore, B.F.; Megaw, J.; Bourke, P. Safety Evaluation of Plasma-Treated Lettuce Broth Using in Vitro and in Vivo Toxicity Models. J. Phys. D Appl. Phys. 2020, 53, 274003. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Bueno-Ferrer, C.; Misra, N.N.; O’Neill, L.; Tiwari, B.K.; Bourke, P.; Cullen, P.J. Dielectric Barrier Discharge Atmospheric Air Plasma Treatment of High Amylose Corn Starch Films. LWT Food Sci. Technol. 2015, 63, 1076–1082. [Google Scholar] [CrossRef]
- Shahbaz, H.M.; Kim, S.; Kim, J.U.; Park, D.; Lee, M.; Lee, D.U.; Park, J. Inactivation of Salmonella typhimurium in Fresh Cherry Tomatoes Using Combined Treatment of UV–TiO2 Photocatalysis and High Hydrostatic Pressure. Food Sci. Biotechnol. 2018, 27, 1531–1539. [Google Scholar] [CrossRef]
- Kim, H.J.; Sung, N.Y.; Yong, H.I.; Kim, H.; Lim, Y.; Ko, K.H.; Yun, C.H.; Jo, C. Mutagenicity and Immune Toxicity of Emulsion-Type Sausage Cured with Plasma-Treated Water. Korean J. Food Sci. Anim. Resour. 2016, 36, 494–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, K.; Lee, S.; Yong, H.I.; Choi, Y.S.; Baek, K.H.; Jo, C.; Jung, S. No Mutagenicity and Oral Toxicity of Winter Mushroom Powder Treated with Atmospheric Non-Thermal Plasma. Food Chem. 2021, 338, 127826. [Google Scholar] [CrossRef]
- Han, S.H.; Suh, H.J.; Hong, K.B.; Kim, S.Y.; Min, S.C. Oral Toxicity of Cold Plasma-Treated Edible Films for Food Coating. J. Food Sci. 2016, 81, T3052–T3057. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Cheigh, C.I.; Kang, J.H.; Lee, S.Y.; Min, S.C. Evaluation of In-Package Atmospheric Dielectric Barrier Discharge Cold Plasma Treatment as an Intervention Technology for Decontaminating Bulk Ready-to-Eat Chicken Breast Cubes in Plastic Containers. Appl. Sci. 2020, 10, 6301. [Google Scholar] [CrossRef]
- Pogorzelska-Nowicka, E.; Górska-Horczyczak, E.; Hanula, M.; Marcinkowska-Lesiak, M.; Pogorzelski, G.; Wierzbicka, A.; Półtorak, A. Sage Extracts Obtained with Cold Plasma Improves Beef Quality. Meat Sci. 2022, 194, 108988. [Google Scholar] [CrossRef]
- Bora, J.; Khan, T.; Mahnot, N.K. Cold Plasma Treatment Concerning Quality and Safety of Food: A Review. Curr. Res. Nutr. Food Sci. 2022, 10, 427–446. [Google Scholar] [CrossRef]
- Ziuzina, D.; Misra, N.N.; Cullen, P.J.; Keener, K.; Mosnier, J.P.; Vilaró, I.; Gaston, E.; Bourke, P. Demonstrating the Potential of Industrial Scale In-Package Atmospheric Cold Plasma for Decontamination of Cherry Tomatoes. Plasma Med. 2016, 6, 397–412. [Google Scholar] [CrossRef]
Number | Food Type | Microorganisms | Plasma Source | Time (min) | Maximum Logarithmic Reduction | References |
---|---|---|---|---|---|---|
1 | Sushi stored in PET containers | Aerobic bacteria | DBD 70–80 kV | 5 min | 11.5 log CFU g−1 | [29] |
2 | Modified atmosphere packaging packed ham | Listeria monocytogenes | DBD 03 kV at 3.5 kHz | 5 min | 2 log CFU g−1 | [30] |
3 | Fresh cut apples in PP and PET | SARS-CoV-2 | Surface DBD 6 kV at 5 kHz | 10 min | Completely Degraded | [31] |
4 | Processed chicken breast in PET container | Escherichia coli O157:H7 Salmonella Listeria monocytogenes | Atmospheric DBD CP (ADCP) Treatment at 38.7 kV | 25 min | 3.9 log CFU Cube−1 3.7 log CFU Cube−1 3.5 log CFU Cube−1 | [32] |
5 | Wheat and barley grains in PP container | Bacteria and fungi | DBD 80 kV | 20 min | Barley: 2.4 log10 CFU g−1 Bacteria2.1 log10 CFU g−1 Fungi Wheat: 1.5 log10 CFU g−1 Bacteria 2.5 log10 CFU g−1 Fungi | [33] |
6 | Spinach in LDPE | Escherichia coli | DBD 12 kV/40 W at 60 Hz Air | 5 min | 3–5 log10 CFU Leaf−1 | [34] |
7 | Cherry tomato in PET container | Salmonella sp. | DBD Air Voltage: 35 kV at 0–2.4 kHz | 3 min | 0.75 log CFU g−1 | [35] |
8 | Romaine lettuce in PET container | 3 min | 0.34 log CFU g−1 | |||
9 | Mixed salad in PET container | 3 min | 0.29 log CFU g−1 | |||
10 | Romaine lettuce in PET clamshell container | Escherichia coli O157:H7 | DBD Air 42.6 kV at 0–2.4 kHz | 10 min | 0.8–1.7 log CFU g−1 | [36] |
11 | Egg (in Shell) in rigid PP/ cryovac pouch | Salmonella sp. | DBD O2/CO2/N2 85 kV at 60 Hz | 15 min | 5.5–6.37 log CFU egg−1 | [37] |
12 | Salmon (fish) in ethylene vinyl acetate/polyamide/PE | Photobacterium phosphoreum | DBD Ar/CO2 Frequency: 11 kV at 16 kHz | 1 min | 3 log CFU g−1 | [38] |
13 | Milk (Whole) in plastic (plastic type not specified) | Escherichia coli | Surface DBD Air 250 W at 1.5 kHzVoltage: | 10 min | 2.43 log CFU mL−1 | [39] |
Salmonella typhimurium | 2.40 log CFU mL−1 | |||||
Listeria monocytogenes | 2.46 log CFU mL−1 | |||||
14 | Cheese in plastic container (plastic type not specified) | Escherichia coli | Surface DBD Air 250 W at 1.5 kHz | 15 min | 2.88 log CFU g−1 | [40] |
Salmonella typhimurium | 15 min | 3.11 log CFU g−1 | ||||
Listeria monocytogenes | 15 min | 2.26 log CFU g−1 | ||||
15 | Beef loin in zipper bag (Polytetrafluoroethylene) with conductive sheet). | Listeria monocytogenes | Surface DBD N2/O2 100 W at 15 kHz | 10 min | 1.90 log CFU g−1 | [41] |
Escherichia coli | 2.57 log CFU g−1 | |||||
Salmonella typhimurium | 2.58 log CFU g−1 |
Number | Packaging Material | CP Source | Treatment | Properties of Packaging Material | References |
---|---|---|---|---|---|
1 | LDPE-gallic acid | Cold radio frequency plasma (13.56 MHz) | Different power (0–90 W) Treatment time (15–150 s) |
| [47] |
2 | LDPE-chitosan-savory essential oil | ACP (power: 3 kW) | 10 s |
| [46] |
3 | LDPE-PET | ADCPDBD | 3 min |
| [52] |
4 | PET-ZnO | High voltage transformer (220 V, 60 Hz) | 3 min |
| [22] |
5 | PET | ADCP | 26 or 27 kV for 1, 2, 3, or 4 min |
| [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, K.Y.; Prendeville, J.; Jaiswal, A.K.; Jaiswal, S. Cold Plasma Technology in Food Packaging. Coatings 2022, 12, 1896. https://doi.org/10.3390/coatings12121896
Perera KY, Prendeville J, Jaiswal AK, Jaiswal S. Cold Plasma Technology in Food Packaging. Coatings. 2022; 12(12):1896. https://doi.org/10.3390/coatings12121896
Chicago/Turabian StylePerera, Kalpani Y., Jack Prendeville, Amit K. Jaiswal, and Swarna Jaiswal. 2022. "Cold Plasma Technology in Food Packaging" Coatings 12, no. 12: 1896. https://doi.org/10.3390/coatings12121896
APA StylePerera, K. Y., Prendeville, J., Jaiswal, A. K., & Jaiswal, S. (2022). Cold Plasma Technology in Food Packaging. Coatings, 12(12), 1896. https://doi.org/10.3390/coatings12121896