Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of Semi-Refined Porphyran (PorphSR)
2.2. p-Benzoquinone Assay
2.3. Phenol-Sulfuric Acid Method
2.4. Quantification of Total Phenols (QTP)
2.5. Hydrogen Peroxide Scavenging Assay (HPSA)
2.6. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Activity
2.7. Ferric-Reducing Antioxidant Power (FRAP)
2.8. 2,2′-Azinobis-(3-Ethylbenzothiazoline-6-Sulfonic Acid Assay (ABTS)
2.9. Film Formulation
2.10. Electron Microscopy
2.11. Mechanical Tests
2.12. Sensory Analysis
2.13. Statistical Treatment
3. Results
3.1. Extraction Methods
3.2. Antioxidant Potential
3.3. Electron Microscopy
3.4. Mechanical Tests
3.5. Sensory Analysis
4. Discussion
4.1. Extraction Methods
4.2. Antioxidant Potential
4.2.1. Hydrogen Peroxide Scavenging Assay (HPSA)
4.2.2. DPPH (2,2-Diphenyl-1-Picrylhydrazyl) Radical Scavenging Activity
4.2.3. Ferric-Reducing Antioxidant Power (FRAP)
4.2.4. 2,2′-Azinobis-(3-Ethylbenzothiazoline-6-Sulfonic Acid Assay (ABTS)
4.2.5. Comparative Analysis of the Different Assays
4.3. Electron Microscopy
4.4. Mechanical Tests
4.5. Sensory Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeo, B.G.; Takada, H.; Hosoda, J.; Kondo, A.; Yamashita, R.; Saha, M.; Maes, T. Polycyclic aromatic hydrocarbons (PAHs) and hopanes in plastic resin pellets as markers of oil pollution via international pellet watch monitoring. Arch. Environ. Contam. Toxicol. 2017, 73, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, A.K.; Rymowicz, W.; Mirończuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinsey, E.M.F. The New Plastics Economy—Rethinking the Future of Plastics; Routledge: London, UK, 2016. [Google Scholar]
- Plastics Europe. Plastics—The Facts 2020; Plastics Europe: Brussels, Belgium, 2020. [Google Scholar]
- Derraik, J.G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852. [Google Scholar] [CrossRef]
- Balestri, E.; Menicagli, V.; Vallerini, F.; Lardicci, C. Biodegradable plastic bags on the seafloor: A future threat for seagrass meadows? Sci. Total Environ. 2017, 605–606, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Mucientes, G.; Queiroz, N. Presence of plastic debris and retained fishing hooks in oceanic sharks. Mar. Pollut. Bull. 2019, 143, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.; Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, T.; Wang, J.; Huang, W.; Wang, R.; Xu, J.; Fu, G.; Gao, G. Spatio-temporal features of microplastics pollution in macroalgae growing in an important mariculture area, China. Sci. Total Environ. 2020, 719, 137490. [Google Scholar] [CrossRef]
- Alimba, C.G.; Faggio, C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef]
- Van Cauwenberghe, L.; Janssen, C.R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, 65–70. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and bio-based polymers: Future prospects of eco-friendly plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Song, B.; Zeng, G.; Zhang, Y.; Huang, W.; Wen, X.; Tang, W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020, 263, 114469. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, A.C.; Cerqueira, M.A.; Souza, B.W.; Martins, J.T.; Teixeira, J.A.; Vicente, A.A. Boletim de Biotecnologia; Sociedade Portuguesa de Biotecnologia: Minho, Portugal, 2010; pp. 17–28. [Google Scholar]
- Ramos, Ó.L.; Fernandes, J.C.; Silva, S.I.; Pintado, M.E.; Malcata, F.X. Edible films and coatings from whey proteins: A Review on formulation, and on mechanical and bioactive properties. Crit. Rev. Food Sci. Nutr. 2012, 52, 533–552. [Google Scholar] [CrossRef] [PubMed]
- Ozen, B.F.; Floros, J.D. Effects of emerging food processing techniques on the packaging materials. Trends Food Sci. Technol. 2001, 12, 60–67. [Google Scholar] [CrossRef]
- Marsh, K.; Bugusu, B. Food packaging-roles, materials, and environmental issues. J. Food Sci. 2007, 72, 39–55. [Google Scholar] [CrossRef]
- Reboleira, J.; Adão, P.; Guerreiro, S.F.C.; Dias, J.R.; Ganhão, R.; Mendes, S.; Andrade, M.; Vilarinho, F.; Sanches-Silva, A.; Mateus, A.; et al. Poultry shelf-life enhancing potential of nanofibers and nanoparticles containing porphyra dioica extracts. Coatings 2020, 10, 315. [Google Scholar] [CrossRef] [Green Version]
- Raheem, D. Application of plastics and paper as food packaging materials—An overview. Emir. J. Food Agric. 2013, 25, 177. [Google Scholar] [CrossRef] [Green Version]
- Embuscado, M.E.; Hubber, K.C. Edible Films and Coatings: Why, What, and How? In Edible Films and Coatings for Food Applications; Huber, K.C., Embuscado, M.E., Eds.; Springer: New York, NY, USA, 2009; pp. 1–23. [Google Scholar]
- Bolumar, T.; Andersen, M.L.; Orlien, V. Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chem. 2011, 129, 1406–1412. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Ding, F. Emerging chitosan-based films for food packaging applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Zhang, Z.; Wang, B.; Qiu, J.; Hui, D.; Wang, S. Polymer composites-based thermoelectric materials and devices. Compos. Part B Eng. 2017, 122, 145–155. [Google Scholar] [CrossRef]
- Akhtar, H.M.S.; Riaz, A.; Hamed, Y.S.; Abdin, M.; Chen, G.; Wan, P.; Zeng, X. Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. Int. J. Biol. Macromol. 2018, 118, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Rhim, J.-W. Preparation of carbohydrate-based functional composite films incorporated with curcumin. Food Hydrocoll. 2020, 98, 105302. [Google Scholar] [CrossRef]
- Fonseca, R.; Mourão, P. Fucosylated chondroitin sulfate as a new oral antithrombotic agent. Thromb. Haemost. 2006, 96, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M. An Overview of the medical applications of marine skeletal matrix proteins. Mar. Drugs 2016, 14, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputo, H.E.; Straub, J.E.; Grinstaff, M.W. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem. Soc. Rev. 2019, 48, 2338–2365. [Google Scholar] [CrossRef] [PubMed]
- Zaporozhets, T.; Besednova, N. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: Review. Pharm. Biol. 2016, 54, 3126–3135. [Google Scholar] [CrossRef]
- Rocha, A.R. Purificação e Caracterização dos Polissacarídeos da Água das Salinas de Aveiro; Univercidade de Aveiro: Aveiro, Portugal, 2016. [Google Scholar]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.S.; Mathieson, A.C.; Neefus, C.D.; Cain, D.F.; Taylor, H.A.; Teasdale, B.W.; West, A.L.; Hehre, E.J.; Brodie, J.; Yarish, C.; et al. Identification of north-western Atlantic Porphyra (Bangiaceae, Bangiales) based on sequence variation in nuclear SSU and plastid rbcL genes. Phycologia 2003, 42, 109–122. [Google Scholar] [CrossRef]
- Pereira, R.; Sousa-Pinto, I.; Yarish, C. Field and culture studies of the life history of Porphyra dioica (Bangiales, Rhodophyta) from Portugal. Phycologia 2004, 43, 756–767. [Google Scholar] [CrossRef]
- Knoop, J.; Griffin, J.N.; Barrento, S. Cultivation of early life history stages of Porphyra dioica from the British Isles. J. Appl. Phycol. 2020, 32, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Yarish, C.; Sousa-Pinto, I. The influence of stocking density, light and temperature on the growth, production and nutrient removal capacity of Porphyra dioica (Bangiales, Rhodophyta). Aquaculture 2006, 252, 66–78. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Hurd, C.L. Seaweed nutrient physiology: Application of concepts to aquaculture and bioremediation. Phycologia 2019, 58, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.M.; Valente, L.M.P.; Sousa-Pinto, I.; Pereira, R.; Pires, M.A.; Seixas, F.; Rema, P. Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J. Appl. Phycol. 2015, 27, 1671–1680. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Kim, K.-N.; Kim, D.; Jeon, Y.-J. Algal polysaccharides: Potential bioactive substances for cosmeceutical applications. Crit. Rev. Biotechnol. 2019, 39, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Isaka, S.; Cho, K.; Nakazono, S.; Abu, R.; Ueno, M.; Kim, D.; Oda, T. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). Int. J. Biol. Macromol. 2015, 74, 68–75. [Google Scholar] [CrossRef]
- Amin, A.S.; El-Didamony, A.M. Colorimetric determination of benzocaine, lignocaine and procaine hydrochlorides in pure form and in pharmaceutical formulations using p-benzoquinone. Anal. Sci. 2003, 19, 1457–1459. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.; Pattabiraman, T.N. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal. Biochem. 1989, 181, 18–22. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Qin, X.-S.; Gan, R.-Y.; Li, H.-B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south china. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [Green Version]
- Bektaşoǧlu, B.; Özyürek, M.; Güçlü, K.; Apak, R. Hydroxyl radical detection with a salicylate probe using modified CUPRAC spectrophotometry and HPLC. Talanta 2008, 77, 90–97. [Google Scholar] [CrossRef]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Berker, K.I.; Güçlü, K.; Tor, I.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Nieto, M.B. Structure and Function of Polysaccharide Gum-Based Edible Films and Coatings. In Edible Films and Coatings for Food Applications; Embuscado, M.E., Huber, K.C., Eds.; Springer: New York, NY, USA, 2009; pp. 57–112. [Google Scholar]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Overall difference tests: Does a sensory difference exist between samples? In Sensory Evaluation Techniques; Meilgaard, M.C., Carr, B.T., Civille, G.V., Eds.; Taylor & Francis: Boca Raton, FL, USA, 1999; pp. 56–95. ISBN 9781439832271. [Google Scholar]
- He, D.; Wu, S.; Yan, L.; Zuo, J.; Cheng, Y.; Wang, H.; Liu, J.; Zhang, X.; Wu, M.; Choi, J.; et al. Antitumor bioactivity of porphyran extracted from Pyropia yezoensis Chonsoo2 on human cancer cell lines. J. Sci. Food Agric. 2019, 99, 6722–6730. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhou, C.; Yang, H.; Huang, X.; Ma, H.; Qin, X.; Hu, J. Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis. Carbohydr. Polym. 2015, 117, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Bojko, L.; de Jonge, G.; Lima, D.; Lopes, L.C.; Viana, A.G.; Garcia, J.R.; Pessôa, C.A.; Wohnrath, K.; Inaba, J. Porphyran-capped silver nanoparticles as a promising antibacterial agent and electrode modifier for 5-fluorouracil electroanalysis. Carbohydr. Res. 2020, 498, 108193. [Google Scholar] [CrossRef]
- Gijsman, P. Polymer Stabilization. In Handbook of Environmental Degradation of Materials; Elsevier: Amsterdam, The Netherlands, 2012; pp. 673–714. ISBN 9781437734560. [Google Scholar]
- Rong, S.; Sun, Y. Degradation of TAIC by water falling film dielectric barrier discharge—Influence of radical scavengers. J. Hazard. Mater. 2015, 287, 317–324. [Google Scholar] [CrossRef]
- Yuan, H.; Song, J.; Zhang, W.; Li, X.; Li, N.; Gao, X. Antioxidant activity and cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 1329–1334. [Google Scholar] [CrossRef]
- Cherkas, A.; Holota, S.; Mdzinarashvili, T.; Gabbianelli, R.; Zarkovic, N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants 2020, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- McDonough, K. Antioxidant nutrients and alcohol. Toxicology 2003, 189, 89–97. [Google Scholar] [CrossRef]
- Wan, A.; Xu, Q.; Sun, Y.; Li, H. Antioxidant Activity of High Molecular Weight Chitosan and N,O-Quaternized Chitosans. J. Agric. Food Chem. 2013, 61, 6921–6928. [Google Scholar] [CrossRef] [PubMed]
- Ayude, M.A.; Doumic, L.I.; Cassanello, M.C.; Nigam, K.D.P. Clean catalytic oxidation for derivatization of key biobased platform chemicals: Ethanol, glycerol, and hydroxymethyl furfural. Ind. Eng. Chem. Res. 2019, 58, 16077–16095. [Google Scholar] [CrossRef]
- Jeon, H.; Hong, S. Peroxide bond cleavage of nonheme iron-(hydro/alkyl)peroxo complexes induced by endogenous and exogenous factors. Chem. Lett. 2019, 48, 80–85. [Google Scholar] [CrossRef]
- Mas-Ballesté, R.; Que, L. Iron-catalyzed olefin epoxidation in the presence of acetic acid: Insights into the nature of the metal-based oxidant. J. Am. Chem. Soc. 2007, 129, 15964–15972. [Google Scholar] [CrossRef]
- Chen, X.-W.; Huang, W.-B.; Sun, X.-Y.; Xiong, P.; Ouyang, J.-M. Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth. Mater. Sci. Eng. C 2021, 128, 112338. [Google Scholar] [CrossRef]
- Adão, P.; Reboleira, J.; Teles, M.; Santos, B.; Ribeiro, N.; Teixeira, C.M.; Guedes, M.; Pessoa, J.C.; Bernardino, S. Enhancement of the antioxidant and antimicrobial activities of porphyran through chemical modification with tyrosine derivatives. Molecules 2021, 26, 2916. [Google Scholar] [CrossRef]
- Bhatia, S.; Sardana, S.; Senwar, K.R.; Dhillon, A.; Sharma, A.; Naved, T. In vitro antioxidant and antinociceptive properties of Porphyra vietnamensis. BioMedicine 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Apak, R. Current issues in antioxidant measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef]
- Han, J.H.; Aristippos, G. Edible Films and Coatings: A review. In Innovations in Food Packaging; Elsevier: Amsterdam, The Netherlands, 2005; Volume 15, pp. 239–262. ISBN 0-12-311632-5. [Google Scholar]
- Wu, D.; Chang, P.R.; Ma, X. Preparation and properties of layered double hydroxide–carboxymethylcellulose sodium/glycerol plasticized starch nanocomposites. Carbohydr. Polym. 2011, 86, 877–882. [Google Scholar] [CrossRef]
- Cian, R.E.; Salgado, P.R.; Drago, S.R.; Mauri, A.N. Effect of glycerol and Ca+2 addition on physicochemical properties of edible carrageenan/porphyran-based films obtained from the red alga, Pyropia columbina. J. Appl. Phycol. 2015, 27, 1699–1708. [Google Scholar] [CrossRef]
- Han, Y.; Yu, M.; Wang, L. Physical and antimicrobial properties of sodium alginate/carboxymethyl cellulose films incorporated with cinnamon essential oil. Food Packag. Shelf Life 2018, 15, 35–42. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.d.J.; Soares, N.d.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Y.; Xiong, Z.; Wang, G.; Li, F.; Zhang, L. Mechanical, hydrophobic and thermal properties of an organic-inorganic hybrid carrageenan-polyvinyl alcohol composite film. Compos. Part B Eng. 2018, 143, 1–8. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, F.; Wang, Z.Y.; NA, W. Interpolymer complexation between copovidone and carbopol and its effect on drug release from matrix tablets. Drug Dev. Ind. Pharm. 2017, 43, 190–203. [Google Scholar] [CrossRef] [PubMed]
Film-Forming Solutions (V = 25 mL) | Porph SR (g) | CMC (g) | PcT (g) | AL (g) | Gly (µL) |
---|---|---|---|---|---|
PorphSR_ | 0.250 | 0 | 0 | 0 | 0 |
PorphSR_Gly | 0.250 | 0 | 0 | 0 | 30 |
PorphSR_CMC | 0.250 | 0.250 | 0 | 0 | 0 |
PorphSR_CMC_Gly | 0.250 | 0.250 | 0 | 0 | 30 |
PorphSR_PcT | 0.250 | 0 | 0.250 | 0 | 0 |
PorphSR_PcT_Gly | 0.250 | 0 | 0.250 | 0 | 30 |
PorphSR_AL | 0.125 | 0 | 0 | 0.250 | 0 |
PorphSR_AL_Gly | 0.125 | 0 | 0 | 0.250 | 30 |
Yield (%) | [Protein] (%) | [D-Galactose] (%) | Total Phenols (Gallic Acid Equivalent µg·mg−1 of Sample) | |
---|---|---|---|---|
PorphSR | 26.66 ± 0.27 | * ND | 67.74 ± 4.13 | 0.616 ± 0.027 |
HPSA (ΔAbs a 524 nm) | DPPH (%Inhibition) | FRAP (Ascorbic Acid Equivalent µg·mg−1 of Sample) | ABTS (%Inhibition) | |
---|---|---|---|---|
PorphSR | 0.066 ± 0.002 a | 2.23 ± 0.78 a | 0.420 ± 0.014 a | 20.46 ± 0.90 a |
PcT | 0.019 ± 0.002 b | 1.14 ± 0.28 | −0.009 ± 0.015 | 2.67 ± 0.76 |
CMC | 0.108 ± 0.009 c | 1.30 ± 1.71 | 0.016 ± 0.011 | 2.20 ± 0.44 |
AL | 0.113 ± 0.006 c | 1.95 ± 0.69 | 0.038 ± 0.007 | −0.80 ± 0.44 |
Gly | 0.028 ± 0.001 b | 1.22 ± 0.48 | −0.010 ± 0.005 | 2.76 ± 0.39 |
PorphSR_PcT | 0.017 ± 0.002 d | −0.25 ± 0.66 | 0.207 ± 0.028 c | 7.51 ± 1.31 c |
PorphSR_PcT_Gly | 0.028 ± 0.001 e | −0.02 ± 0.71 | 0.168 ± 0.049 c | 6.62 ± 0.41 c |
PorphSR_CMC | 0.090 ± 0.001 | 0.44 ± 0.10 | 0.266 ± 0.008 d | 10.02 ± 0.49 d |
PorphSR_CMC_Gly | 0.089 ± 0001 | 0.21 ± 0.42 | 0.180 ± 0.016 c | 7.09 ± 0.84 c |
PorphSR_AL | 0.095 ± 0.011 | −0.41 ± 0.41 | 0.106 ± 0.014 e | 6.84 ± 1.54 c |
PorphSR_AL_Gly | 0.094 ± 0.006 | −0.76 ± 0.62 | 0.113 ± 0.010 e | 5.36 ± 0.52 c |
Negative Control | 0.099 ± 0.002 | 0.16 ± 0.94 | 0.048 ± 0.012 | 0.52 ± 0.49 |
Young’s Modulus (MPa) | UTS (MPa) | |
---|---|---|
PorphSR_ | 2897.23 ± 524.44 | 12.86 ± 0.79 a |
PorphSR_Gly | 1122.20 ± 200.54 a | 4.34 ± 0.78 b |
PorphSR_PcT | 3992.34 ± 272.28 b | 26.00 ± 5.92 c |
PorphSR_PcT_Gly | 1629.00 ± 142.41 a | 23.18 ± 1.62 c |
PorphSR_CMC | 1624.15 ± 330.61 a | 10.26 ± 2.57 ab |
PorphSR_CMC_Gly | 1648.12 ± 297.32 a | 21.94 ± 4.28 ac |
PorphSR_AL | 4209.78 ± 191.25 b | 17.36 ± 4.96 abc |
PorphSR_AL_Gly | 1576.02 ± 424.38 a | 9.33 ± 3.00 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teles, M.; Adão, P.; Afonso, C.; Bernardino, R.; Guedes, M.; Baptista, R.; Bernardino, S. Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica. Coatings 2022, 12, 148. https://doi.org/10.3390/coatings12020148
Teles M, Adão P, Afonso C, Bernardino R, Guedes M, Baptista R, Bernardino S. Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica. Coatings. 2022; 12(2):148. https://doi.org/10.3390/coatings12020148
Chicago/Turabian StyleTeles, Marco, Pedro Adão, Clélia Afonso, Raul Bernardino, Mafalda Guedes, Ricardo Baptista, and Susana Bernardino. 2022. "Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica" Coatings 12, no. 2: 148. https://doi.org/10.3390/coatings12020148
APA StyleTeles, M., Adão, P., Afonso, C., Bernardino, R., Guedes, M., Baptista, R., & Bernardino, S. (2022). Development and Characterization of Films for Food Application Incorporating Porphyran Extracted from Porphyra dioica. Coatings, 12(2), 148. https://doi.org/10.3390/coatings12020148