Friction and Wear Properties of Cr-Nx Coatings for Nuclear Fuel Cladding
Abstract
:1. Introduction
2. Methods
2.1. Coating Deposition
2.2. Friction and Wear Experiment
2.3. Characterization
3. Results and Discussion
3.1. SEM and X-ray Diffraction (XRD) Analyses
3.2. Wear Behavior
3.3. Hardness Analysis
3.4. Coefficient of Friction
4. Conclusions
- (1)
- The N content can control the phase composition of the Cr-based coatings. As the N content increased, the hardness of the Cr-based coatings increased gradually;
- (2)
- Under anhydrous and water-lubricated conditions, the Cr2N coating showed better friction reduction and anti-wear behaviors than the Cr and CrN coatings; therefore, the Cr2N coating is more resistant to GTRF degradation in LWRs;
- (3)
- For the Zr-4 alloy and Cr coating, the reduction in wear debris in the wear scar in the water environment promoted the wear of the samples. In contrast, for the CrN and Cr2N coatings, the reduction in wear debris in the wear scar in the water environment inhibited the wear of the coatings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Terrani, K.A. Accident tolerant fuel cladding development: Promise, status, and challenges. J. Nucl. Mater. 2018, 501, 13–30. [Google Scholar] [CrossRef]
- Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Reshetnyak, E.N.; Tolmachova, G.N.; V’Yugov, P.N. Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air. J. Nucl. Mater. 2015, 465, 400–406. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Terrani, K.A.; Zinkle, S.J.; Snead, L.L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding. J. Nucl. Mater. 2014, 448, 420–435. [Google Scholar] [CrossRef]
- Barrett, K.; Bragg-Sitton, S.; Galicki, D. Advanced LWR nuclear fuel cladding system development trade-off study. In Office of Scientific & Technical Information Technical Reports; Idaho National Laboratory: Idaho Falls, ID, USA, 2012. [Google Scholar]
- Blandford, E.D.; Ahn, J. Examining the Nuclear Accident at Fukushima Daiichi. Elements 2012, 8, 189–194. [Google Scholar] [CrossRef]
- Metzger, K.E.; Knight, T.W.; Williamson, R.L. Model of U3Si2 fuel system using bison fuel code. In Proceedings of the ICAPP 2014, Charlotte, NC, USA, 6–9 April 2014; p. 14343. [Google Scholar]
- Ross, S.B.; El-Genk, M.S.; Matthews, R.B. Thermal conductivity correlation for uranium nitride fuel between 10 and 1923 K. J. Nucl. Mater. 1988, 151, 318–326. [Google Scholar] [CrossRef]
- Yueh, K.; Terrani, K.A. Silicon carbide composite for light water reactor fuel assembly applications. J. Nucl. Mater. 2014, 448, 380–388. [Google Scholar] [CrossRef]
- Chun, J.-H.; Lim, S.-W.; Chung, B.-D.; Lee, W.-J. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs. Nucl. Eng. Des. 2015, 289, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, C.R.F. Selection of fuel cladding material for nuclear fission reactors. Eng. Fail. Anal. 2011, 18, 1943–1962. [Google Scholar] [CrossRef]
- Wu, W.; Ran, G.; Li, Y.; Cong, S.; Ye, C.; Zhang, R.; Sun, Y. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment. Corros. Sci. 2020, 174, 108824. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Wang, H.; Wang, X.; An, X.; He, K. Effects of Cr element on the crystal structure, microstructure, and mechanical properties of FeCrAl alloys. Mater. Sci. Eng. A 2021, 826, 142003. [Google Scholar] [CrossRef]
- Chen, S.-L.; He, X.-J.; Yuan, C.-X. Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors. Nucl. Sci. Tech. 2020, 31, 94–123. [Google Scholar] [CrossRef]
- Tang, C.; Stueber, M.; Seifert, H.J.; Steinbrueck, M. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings. Corros. Rev. 2017, 35, 141–165. [Google Scholar] [CrossRef]
- Meng, C.; Yang, L.; Wu, Y.; Tan, J.; Dang, W.; He, X.; Ma, X. Study of the oxidation behavior of CrN coating on Zr alloy in air. J. Nucl. Mater. 2019, 515, 354–369. [Google Scholar] [CrossRef]
- He, X.; Zhan, H.; Lin, J.; Liang, G.; Yang, S.; Meng, C.; Ma, X.; Tan, J.; Liu, M. Effect of Si content of CrSi-based coatings on their oxidation resistance in high temperature air. Ceram. Int. 2020, 46, 11357–11363. [Google Scholar] [CrossRef]
- Jiang, L.; Xiu, P.; Yan, Y.; Lu, C.; Huang, M.; Liu, T.; Ye, C.; Sun, H.; Shu, R.; Wang, L. Effects of ion irradiation on chromium coatings of various thicknesses on a zirconium alloy. J. Nucl. Mater. 2019, 526, 151740. [Google Scholar] [CrossRef]
- Blau, P.J.; Qu, J.; Lu, R. Modeling of Complex Wear Behavior Associated with Grid-toRod Fretting in Light Water Nuclear Reactors. Jom 2016, 68, 2938–2943. [Google Scholar] [CrossRef]
- Kim, H.-K.; Lee, Y.-H.; Heo, S.-P. Mechanical and experimental investigation on nuclear fuel fretting. Tribol. Int. 2006, 39, 1305–1319. [Google Scholar] [CrossRef]
- Reed, B.; Wang, R.; Lu, R.Y.; Qu, J. Autoclave grid-to-rod fretting wear evaluation of a candidate cladding coating for accident-tolerant fuel. Wear 2021, 466, 203578. [Google Scholar] [CrossRef]
- Yan, J.; Yuan, K.; Tatli, E.; Karoutas, Z. A new method to predict Grid-To-Rod Fretting in a PWR fuel assembly inlet region. Nucl. Eng. Des. 2011, 241, 2974–2982. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kim, H.-K. Fretting wear behavior of a nuclear fuel rod under a simulated primary coolant condition. Wear 2013, 301, 569–574. [Google Scholar] [CrossRef]
- He, X.; Yang, S.; Huang, L.; Meng, C.; Wang, Y.; Tan, J. Friction and wear properties of CrSi-based coatings for nuclear fuel cladding. Surf. Coat. Technol. 2020, 402, 126311. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Byun, T.S. A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel. J. Nucl. Mater. 2015, 465, 857–865. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-H.; Park, J.-H.; Kim, I.-H.; Park, D.-J.; Jung, Y.-I.; Choi, B.-K.; Kim, H.-G. Enhanced wear resistance of CrAl-coated cladding for accident tolerant fuel. J. Nucl. Mater. 2019, 523, 223–230. [Google Scholar] [CrossRef]
- Ma, B.; Luo, B.; Wang, Z.; Meng, C.; He, X. Friction and wear properties of CrAl-based coatings for nuclear fuel cladding. Front. Energy. Res. 2021, 9, 622708. [Google Scholar] [CrossRef]
- Ma, J.; Meng, C.; Wang, H.; He, X. Effect of Al Content on the High-Temperature Oxidation Resistance and Structure of CrAl Coatings. Coatings 2021, 11, 1434. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Wang, Q.; Li, M.; Lu, X. A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: I. Microstructure and mechanical properties. Surf. Coat. Technol. 2013, 214, 160–167. [Google Scholar] [CrossRef]
Sn | Fe | Cr | N | C | O | Zr+ Impurities |
---|---|---|---|---|---|---|
1.2–1.7 | 0.18–0.24 | 0.07–0.13 | 0.008 | 0.02 | 0.16 | Balance |
Sample | Cr | CrN | Cr2N |
---|---|---|---|
Current/A | 100 | 100 | 100 |
Bias voltage/V | −100 | −100 | −100 |
Temperature/°C | 375 | 375 | 375 |
Ar flow rate/sccm | 300 | 0 | 200 |
N2 flow rate/sccm | 0 | 300 | 450 |
Gas pressure/bar | 0.9 | 0.9 | 0.9 |
Rotation speed/(r·min−1) | 20 | 20 | 20 |
Total deposition time/h | 12 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Z.; Shang, G.; Ma, S.; Meng, C.; Xie, P.; Wang, H.; An, X.; He, X. Friction and Wear Properties of Cr-Nx Coatings for Nuclear Fuel Cladding. Coatings 2022, 12, 163. https://doi.org/10.3390/coatings12020163
Qu Z, Shang G, Ma S, Meng C, Xie P, Wang H, An X, He X. Friction and Wear Properties of Cr-Nx Coatings for Nuclear Fuel Cladding. Coatings. 2022; 12(2):163. https://doi.org/10.3390/coatings12020163
Chicago/Turabian StyleQu, Zheng, Guixiao Shang, Siyuan Ma, Chuiyi Meng, Peng Xie, Hui Wang, Xuguang An, and Xiujie He. 2022. "Friction and Wear Properties of Cr-Nx Coatings for Nuclear Fuel Cladding" Coatings 12, no. 2: 163. https://doi.org/10.3390/coatings12020163
APA StyleQu, Z., Shang, G., Ma, S., Meng, C., Xie, P., Wang, H., An, X., & He, X. (2022). Friction and Wear Properties of Cr-Nx Coatings for Nuclear Fuel Cladding. Coatings, 12(2), 163. https://doi.org/10.3390/coatings12020163