The Effects of Several Metal Nanoparticles on Seed Germination and Seedling Growth: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Risk of Bias and Publication Bias Assessment of the Included Studies
2.3. Germination and Seedling Growth Response Variables
2.4. Meta-Analysis and Statistical Analyses
3. Results
3.1. Description of the Dataset
3.2. Risk of Bias and Publication Bias Assessment of the Included Studies
3.3. Effect of Metal Nanoparticles on the Final Germination Percentage
3.4. Effect of Metal Nanoparticles on Root Length
3.5. Effect of Metal Nanoparticles on Shoot Length
4. Discussion
4.1. FGP Increased more under Ag-NPs Treatment
4.2. RL Enhanced more under Zn-NPs Treatment
4.3. FGP and RL Improved more in Lower Levels of NPs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seeger, E.M.; Baun, A.; Kästner, M.; Trapp, S. Insignificant acute toxicity of TiO2 nanoparticles to willow trees. J. Soil Sediment 2008, 9, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.J.; Corredor, E.; Testillano, P.S.; Risueño, M.C.; Marquina, C.; Ibarra, M.R.; Rubiales, D.; Pérez-De-Luque, A. Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Ann. Bot. 2008, 101, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 2020, 10, 5037. [Google Scholar] [CrossRef] [Green Version]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Arruda, S.C.; Silva, A.L.D.; Galazzi, R.M.; Azevedo, R.A.; Arruda, M.A.Z. Nanoparticles applied to plant science: A review. Talanta 2015, 131, 693–705. [Google Scholar] [CrossRef]
- Arnott, A.; Galagedara, L.; Thomas, R.; Cheema, M.; Sobze, J.M. The potential of rock dust nanoparticles to improve seed germination and seedling vigor of native species: A review. Sci. Total Environ. 2021, 775, 145139. [Google Scholar] [CrossRef]
- El-Temsah, Y.S.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2012, 27, 42–49. [Google Scholar] [CrossRef]
- Lopez-Moreno, M.L.; Rosa, G.D.L.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem. 2010, 58, 3689–3693. [Google Scholar] [CrossRef] [Green Version]
- Feizi, H.; Kamali, M.; Jafari, L.; Moghaddam, P.R. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 2013, 91, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461–462, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Rizvi, A.; Syed, A.; Elgorban, A.M.; Khan, M.S.; AL-Shwaiman, H.A.; Musarrat, J.; Lee, J. Differential responses of maize (Zea mays) at the physiological, biomolecular, and nutrient levels when cultivated in the presence of nano or bulk ZnO or CuO or Zn2+ or Cu2+ ions. J. Hazard. Mater. 2021, 419, 126493. [Google Scholar] [CrossRef] [PubMed]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef] [PubMed]
- Jamari, J.; Ammarullah, M.I.; Saad, A.P.M.; Syahrom, A.; Uddin, M.; van der Heide, E.; Basri, H. The Effect of Bottom Profile Dimples on the Femoral Head on Wear in Metal-on-Metal Total Hip Arthroplasty. J. Funct. Biomater. 2021, 12, 38. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Maula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca Stress Simulation of Metal-on-Metal Total Hip Arthroplasty during Normal Walking Activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Ureta-Leones, D.; García-Quintana, Y.; Vega-Rosete, S.; Pérez-Morell, L.; Bravo-Medina, C.A.; Arteaga-Crespo, Y. Effect of pre-germination treatment with direct magnetic field exposure: A systematic review and meta-analysis. Eur. J. Forest Res. 2021, 140, 1029–1038. [Google Scholar] [CrossRef]
- Soltani, E.; Baskin, J.M.; Baskin, C.C.; Benakashani, F. A meta-analysis of the effects of treatments used to break dormancy in seeds of the megagenus Astragalus (Fabaceae). Seed Sci. Res. 2020, 30, 224–233. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Acharya, P.; Jayaprakasha, G.K.; Semper, J.; Patil, B.S. 1H nuclear magnetic resonance and liquid chromatography coupled with mass spectrometry-based metabolomics reveal enhancement of growth-promoting metabolites in onion seedlings treated with green-synthesized nanomaterials. J. Agric. Food Chem. 2020, 68, 13206–13220. [Google Scholar] [CrossRef]
- Belhamel, C.; Boulekbache-Makhlouf, L.; Bedini, S.; Tani, C.; Lombardi, T.; Giannotti, P.; Madani, K.; Belhamel, K.; Conti, B. Nanostructured alumina as seed protectant against three stored-product insect pests. J. Stored Prod. Res. 2020, 87, 101607. [Google Scholar] [CrossRef]
- Corral-Diaz, B.; Peralta-Videa, J.R.; Alvarez-Parrilla, E.; Rodrigo-García, J.; Maria Isabel Morales, J.; Osuna-Avila, P.; Niu, G.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L.). Plant Physiol. Biochem. 2014, 84, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Duran, N.M.; Medina-Llamas, M.; Cassanji, J.G.B.; de Lima, R.G.; de Almeida, E.; Macedo, W.R.; Mattia, D.; de Carvalho, H.W.P. Bean seedling growth enhancement using magnetite nanoparticles. J. Agric. Food Chem. 2018, 66, 5746–5755. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Agarwala, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.M.; Lee, J.H.J.; Jayaprakasha, G.K.; Patil, B.S. Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustain. Chem. Eng. 2019, 7, 5142–5151. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Ma, C.; Wang, Y.; Wu, C.; Huang, J.; Xing, B. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 2016, 159, 326–334. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Li, W.; Ashraf, U.; Ma, L.; Tang, X.; Pan, S.; Tian, H.; Mo, Z. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J. Nanobiotechnol. 2021, 19, 75. [Google Scholar] [CrossRef]
- Liu, J.; Simms, M.; Song, S.; King, R.S.; Cobb, G.P. Physiological effects of copper oxide nanoparticles and arsenic on the growth and life cycle of rice (Oryza sativa japonica ‘Koshihikari’). Environ. Sci. Technol. 2018, 52, 13728–13737. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, M.L.; Rosa, G.D.L.; Cruz-Jiménez, G.; Castellano, L.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies. Microchem. J. 2017, 134, 54–61. [Google Scholar] [CrossRef]
- Nguyen, D.T.C.; Le, H.T.N.; Nguyen, T.T.; Nguyen, T.T.T.; Bach, L.G.; Nguyen, T.D.; Tran, T.V. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. J. Hazard. Mater. 2021, 420, 126586. [Google Scholar] [CrossRef]
- Saquib, Q.; Faisal, M.; Alatar, A.A.; Al-Khedhairy, A.A.; Ahmed, M.; Ansari, S.M.; Alwathnani, H.A.; Okla, M.K.; Dwivedi, S.; Musarrat, J.; et al. Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: Deciphering the role of signaling factors, oxidative stress and cell death. J. Environ. Sci. 2016, 47, 49–62. [Google Scholar] [CrossRef]
- Segura, R.; Vásquez, G.; Colson, E.; Gerbaux, P.; Frischmon, C.; Nesic, A.; García, D.E.; Cabrera-Barjas, G. Phytostimulant properties of highly stable silver nanoparticles obtained with saponin extract from Chenopodium quinoa. J. Sci. Food Agric. 2020, 100, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, N.B.; Hussaina, I.; Singh, H.; Yadava, V.; Singh, S.C. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J. Biotechnol. 2016, 233, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kumar, S.; Alok, A.; Upadhyay, S.K.; Rawat, M.; Tsang, D.C.W.; Bolan, N.; Kim, K.H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 2019, 214, 1061–1070. [Google Scholar] [CrossRef]
- Singh, Y.; Kaushal, S.; Sodhi, R.S. Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Adv. 2020, 2, 3972. [Google Scholar] [CrossRef]
- Song, U.; Jun, H.; Waldman, B.; Roh, J.; Kim, Y.; Yi, J.; Lee, E.J. Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol. Environ. Saf. 2013, 93, 60–67. [Google Scholar] [CrossRef]
- Subpiramaniyam, S.; Hong, S.C.; Yi, P.I.; Jang, S.H.; Suh, J.M.; Jung, E.S.; Park, J.S.; Cho, L.H. Influence of sawdust addition on the toxic effects of cadmium and copper oxide nanoparticles on Vigna radiata seeds. Environ. Pollut. 2021, 289, 117311. [Google Scholar] [CrossRef]
- Sun, Y.; Jing, R.; Zheng, F.; Zhang, S.; Jiao, W.; Wang, F. Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Chemosphere 2019, 236, 124336. [Google Scholar] [CrossRef]
- Tan, W.; Du, W.; Barrios, A.C.; Armendariz, R., Jr.; Zuverza-Mena, N.; Ji, Z.; Chang, C.H.; Zink, J.I.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; et al. Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants. Environ. Pollut. 2017, 222, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Reyes, J.; Vilchis-Nestor, A.R.; Majumdar, S.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J. Hazard. Mater. 2013, 263, 677–684. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, L.; Zhao, J.; Wang, X.; White, J.C.; Xing, B. CuO nanoparticle interaction with Arabidopsis thaliana: Toxicity, parent-progeny transfer, and gene expression. Environ. Sci. Technol. 2016, 50, 6008–6016. [Google Scholar] [CrossRef] [PubMed]
- Yadu, B.; Chandrakara, V.; Korramb, J.; Satnami, M.L.; Kumar, M.; Keshavkant, S. Silver nanoparticle modulates gene expressions, glyoxalase system and oxidative stress markers in fluoride stressed Cajanus cajan L. J. Hazard. Mater. 2018, 353, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Zuverza-Mena, N.; Armendariz, R.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Front. Plant Sci. 2016, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Homaee, M.B.; Ehsanpour, A.A. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic. Environ. Biotechnol. 2016, 57, 544–553. [Google Scholar] [CrossRef]
- Matthias, W.; Tobias, K.; Rose, T.J. From promise to application: Root traits for enhanced nutrient capture in rice breeding. J. Exp. Bot. 2016, 12, 3605. [Google Scholar]
- Guo, Q.; Jonathan, L.; Song, J.; Jessica, R.; Turnbull, M.H.; Jameson, P.E. Insights into the functional relationship between cytokinin-induced root system phenotypes and nitrate uptake in Brassica napus. Funct. Plant Biol. 2017, 44, 832–844. [Google Scholar] [CrossRef] [Green Version]
- Subbaiah, L.V.; Prasad, T.N.V.K.V.; Krishna, T.G.; Sudhakar, P.; Reddy, B.R.; Pradeep, T. Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). J. Agric. Food Chem. 2016, 64, 3778–3788. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, M.; Rajini, S.B.; Udayashankar, A.C.; Niranjana, S.R.; Lund, O.S.; Shetty, H.S.; Prakash, H.S. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 2019, 121, 103–112. [Google Scholar] [CrossRef]
- Kasivelu, G.; Selvaraj, T.; Malaichamy, K.; Kathickeyan, D.; Shkolnik, D.; Chaturvedi, S. Nano-micronutrients [γ-Fe2O3 (iron) and ZnO (zinc)]: Green preparation, characterization, agro-morphological characteristics and crop productivity studies in two crops (rice and maize). New J. Chem. 2020, 44, 11373. [Google Scholar] [CrossRef]
- Sun, D.; Hussain, H.I.; Yi, Z.; Rookes, J.E.; Kong, L.; Cahill, D.M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91. [Google Scholar] [CrossRef]
- Wu, F.; Fang, Q.; Yan, S.; Pan, L.; Ye, W. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): Germination, early growth, and arsenic uptake. Environ. Sci. Pollut. Res. 2020, 27, 26974–26981. [Google Scholar] [CrossRef] [PubMed]
- García-López, J.; Zavala-García, F.; Olivares-Sáenz, E.; Lira-Saldívar, R.; Barriga-Castro, E.D.; Ruiz-Torres, N. Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy 2018, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Sun, Y.Q.; Tsang, D.C.W.; Lin, D.H. Environmental transformations and ecological effects of iron-based nanoparticles. Environ. Pollut. 2018, 232, 10–30. [Google Scholar] [CrossRef] [PubMed]
No. | Study | Seed Species | Metal Nanoparticle Treatment | Cultivation Media | Sample Size | Indicators | ||
---|---|---|---|---|---|---|---|---|
Type | Exposure Mode | Best Concentration | ||||||
1 | Acharya et al., 2020 [5] | Watermelons (Citrullus lanatus) | nano-Ag | Suspension | 31.3 ppm | Filter papers in Petri dishes | 400 | FGP |
2 | Acharya et al., 2020a [20] | Onion (Allium cepa) | nano-Ag | Suspension | 31.3 ppm | Filter papers in Petri dishes | 300 | FGP |
3 | Ahmed et al., 2021 [13] | Maize (Zea mays) | nano-Zn | Suspension | 0.05 mg/mL | Semisolid agar in Petri dishes | 90 | SL |
4 | Belhamel et al., 2020 [21] | P. vulgaris var. “Piattelli” | nano-Al | Suspension | 1.6 mg/mL | Filter papers in Petri dishes | 50 | RL |
5 | Corral-Diaz et al., 2014 [22] | Radish (Raphanus sativus) | nano-Ce | Mixture with soil | 62.5 mg/kg b, 125 mg/kg c | Pots with loamy sand soil | 32 | RL, SL |
6 | Duran et al., 2018 [23] | Phaseolus vulgaris | nano-Fe | Suspension | 10 mg/L | Filter papers in Petri dishes | 100 | RL |
7 | El-Temsah and Joner, 2012 [9] | Barley (Hordeum vulgare L., cv. Annabell) | nano-Ag | Suspension | 10 mg/L | Filter papers in Petri dishes | 30 | SL |
8 | Gupta et al., 2018 [24] | Rice (Oryza sativa L., cv. Swarna) | nano-Ag | Suspension | 20 ppm | 0.8% agar medium | 30 | RL |
9 | Kasote et al., 2019 [25] | Watermelon (Citrullus lanatus) | nano-Fe | Suspension | 160 mg/L | Filter papers in Petri dishes | 60 | SL |
10 | Li et al., 2016 [26] | Corn (Zea mays) | nano-Fe | Suspension | 50 mg/L | Filter papers in Petri dishes | 30 | FGP |
11 | Li et al., 2021 [27] | Fragrant rice varieties, Xiangyaxiangzhan and Yuxiangyouzhan (Oryza sativa) | nano-Zn | Suspension | 50 mg/L a, 25 mg/L b | Filter papers in Petri dishes | 100 a, 40 b | FGP, RL |
12 | Lin and Xing, 2007 [4] | Lettuce (Lactuca sativa) | nano-Al | Suspension | 2000 mg/L | Filter papers in Petri dishes | 30 | FGP |
13 | Liu et al., 2018 [28] | Rice (Oryza sativa japonica) | nano-Cu | Mixture with soil | 100 mg/L | Growth containers with soil | 200 | FGP |
14 | López-Moreno et al., 2017 [29] | Corn (Zea mays) | nano-Zn | Suspension | 800 ppm | Filter papers in Petri dishes | 30 | RL |
15 | Mahakham et al., 2017 [14] | Jasmine rice (Oryza sativa L. cv. KDML105) | nano-Ag | Suspension | 20 mg/L | Filter papers in Petri dishes | 30 | FGP |
16 | Nguyen et al., 2021 [30] | Green and red beans | nano-Zn | Suspension | 10 mg/L a,b,c | Filter papers in Petri dishes | 60 | FGP, RL, SL |
17 | Saquib et al., 2016 [31] | Radish (Raphanus sativus) | nano-Fe | Suspension | 0.25 mg/L | Filter papers in Petri dishes | 60 | RL |
18 | Segura et al., 2020 [32] | Radish (Raphanus sativus) | nano-Ag | Suspension | 500 μg/mL | Filter papers in Petri dishes | 30 | RL |
19 | Singh et al., 2016 [33] | Tomato (Solanum lycopersicum) | nano-Zn | Suspension | 1.2 mM b,c | Filter papers in Petri dishes | 30 | RL, SL |
20 | Singh et al., 2019 [34] | Wheat (Triticum aestivum) | nano-Zn | Suspension | 250 mg/L b, 15 mg/L c | Filter papers in Petri dishes | 12 | RL, SL |
21 | Singh et al., 2020 [35] | Wheat (Triticum aestivum) | nano-Ag | Suspension | 25 mg/L | Filter papers in Petri dishes | 75 | FGP, RL, SL |
22 | Song et al., 2013 [36] | Tomato (Lycopersicon esculentum) | nano-Ag | Suspension | 100 mg/kg | Filter papers in Petri dishes | 50 | FGP |
23 | Subpiramaniyam et al., 2021 [37] | Mung bean (Vigna radiata) | nano-Cu | Mixture with soil | 1 mg/kg b,c | Glass beakers with soil | 30 | RL, SL |
24 | Sun et al., 2019 [38] | Mung bean (Vigna radiata) | nano-Fe | Suspension | 450 mg/L a, 150 mg/L b | Filter papers in Petri dishes | 30 | FGP, RL |
25 | Tan et al., 2017 [39] | Basil (Ocimum basilicum) | nano-Ti | Mixture with soil | 750 mg/kg | Pots with topsoil | 16 | RL |
26 | Trujillo-Reyes et al., 2013 [40] | Radish (Raphanus sativus) | nano-Ce | Suspension | 50 ppm b,c | Filter papers in Petri dishes | 30 | RL, SL |
27 | Wang et al., 2016 [41] | Arabidopsis thaliana | nano-Cu | Suspension | 20 mg/L | MS media | 60 | FGP |
28 | Yadu et al., 2018 [42] | Cajanus cajan | nano-Ag | Suspension | 1.2 nM | Filter papers in Petri dishes | 350 | FGP |
29 | Zuverza-Mena et al., 2016 [43] | Radish (Raphanus sativus) | nano-Ag | Suspension | 125 mg/L | Filter papers in Petri dishes | 120 | FGP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Liu, Y.; Chen, J.; Zhu, Y.; Zhang, Z. The Effects of Several Metal Nanoparticles on Seed Germination and Seedling Growth: A Meta-Analysis. Coatings 2022, 12, 183. https://doi.org/10.3390/coatings12020183
Guo H, Liu Y, Chen J, Zhu Y, Zhang Z. The Effects of Several Metal Nanoparticles on Seed Germination and Seedling Growth: A Meta-Analysis. Coatings. 2022; 12(2):183. https://doi.org/10.3390/coatings12020183
Chicago/Turabian StyleGuo, Huanhuan, Yong Liu, Jidai Chen, Yan Zhu, and Zihan Zhang. 2022. "The Effects of Several Metal Nanoparticles on Seed Germination and Seedling Growth: A Meta-Analysis" Coatings 12, no. 2: 183. https://doi.org/10.3390/coatings12020183
APA StyleGuo, H., Liu, Y., Chen, J., Zhu, Y., & Zhang, Z. (2022). The Effects of Several Metal Nanoparticles on Seed Germination and Seedling Growth: A Meta-Analysis. Coatings, 12(2), 183. https://doi.org/10.3390/coatings12020183