A Comparison of the Effects of Several Foliar Forms of Magnesium Fertilization on ‘Superior Seedless’ (Vitis vinifera L.) in Saline Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vine and Experimental Setup
2.2. Magnesium Fertilization Forms Treatment Protocol
2.3. Magnesium Deficiency Index
2.4. Leaf Pigments Content and Chlorophyll Fluorescence
2.5. Leaf Area, Total Carbohydrate Content, Ion Leakage Percentage, and Malondialdehyde (MDA)
2.6. Leaf Minerals Content
2.7. Yield and Berry Properties
2.8. Statistical Analysis
3. Results
3.1. Magnesium Deficiency Index (MD-Index)
3.2. Photosynthetic Pigments: Chlorophyll (Chls) and Carotene (Car)
3.3. Parameters of Chlorophyll Fluorescence (CF) (Fv/Fm, Fm, and F0)
3.4. Leaf Area, Shoot Carbohydrate, Ion Leakage, and Malondialdehyde Content
3.5. Mineral Content in Leaves
3.6. Yield and Berry Quality Properties
3.7. Multivariate Analysis of Leaf Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, J.; Lu, L.-M.; Nie, Z.-L.; Liu, X.-Q.; Zhang, N.; Ickert-Bond, S.; Gerrath, J.; Manchester, S.R.; Boggan, J.; Chen, Z.-D. A new phylogenetic tribal classification of the grape family (Vitaceae). J. Syst. Evol. 2018, 56, 262–272. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 December 2021).
- Asghari, M.; Rezaei-Rad, R. 24-Epibrassinolide enhanced the quality parameters and phytochemical contents of table grape. J. Appl. Bot. Food Qual. 2018, 91, 226–231. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium Fertilization Improves Crop Yield in Most Production Systems: A Meta-Analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhat, N.; Elkhouni, A.; Zorrig, W.; Smaoui, A.; Abdelly, C.; Rabhi, M. Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiol. Plant. 2016, 38, 145. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delfani, M.; Baradarn Firouzabadi, M.; Farrokhi, N.; Makarian, H. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun. Soil Sci. Plant Anal. 2014, 45, 530–540. [Google Scholar] [CrossRef]
- Monteiro, A.I.; Malheiro, A.C.; Bacelar, E.A. Morphology, Physiology and Analysis Techniques of Grapevine Bud Fruitfulness: A Review. Agriculture 2021, 11, 127. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates: Sunderland, UK, 2010. [Google Scholar]
- Grigore, M.N.; Boscaiu, M.; Llinares, J.; Vicente, O. Mitigation of salt stress-induced inhibition of Plantago crassifolia reproductive development by supplemental calcium or magnesium. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ma, W.; Wei, J.; Mao, Y.; Peng, Z.; Zhang, J.; Kong, X.; Han, Q.; Fan, W.; Yang, Y.; et al. Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis. Plant Soil 2020, 457, 83–95. [Google Scholar] [CrossRef]
- Pang, J.-J.; Shin, J.-S.; Li, S.-Y. The Catalytic Role of RuBisCO for in situ CO2 Recycling in Escherichia coli. Front. Bioeng. Biotechnol. 2020, 8, 543807. [Google Scholar] [CrossRef]
- Jamali Jaghdani, S.; Jahns, P.; Tränkner, M. The impact of magnesium deficiency on photosynthesis and photoprotection in Spinacia oleracea. Plant Stress 2021, 2, 100040. [Google Scholar] [CrossRef]
- Jamali Jaghdani, S.; Jahns, P.; Tränkner, M. Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Sci. 2021, 302, 110751. [Google Scholar] [CrossRef] [PubMed]
- Pogłodziński, R.; Barłóg, P.; Grzebisz, W. Effect of nitrogen and magnesium sulfate application on sugar beet yield and quality. Plant Soil Environ. 2021, 67, 507–513. [Google Scholar] [CrossRef]
- Laing, W.; Greer, D.; Sun, O.; Beets, P.; Lowe, A.; Payn, T. Physiological impacts of Mg deficiency in Pinus radiata: Growth and photosynthesis. New Phytol. 2000, 146, 47–57. [Google Scholar] [CrossRef]
- Ling, L.L.; Peng, L.Z.; Cao, L.; Jiang, C.L.; Chun, C.P.; Zhang, G.Y.; Wang, Z.X. Effect of magnesium deficiency on photosynthesis characteristic of Beibei 447 Jinchen orange. J. Fruit Sci. 2009, 26, 275–280. [Google Scholar]
- He, H.; Jin, X.; Ma, H.; Deng, Y.; Huang, J.; Yin, L. Changes of plant biomass partitioning, tissue nutrients and carbohydrates status in magnesium-deficient banana seedlings and remedy potential by foliar application of magnesium. Sci. Hortic. 2020, 268, 109377. [Google Scholar] [CrossRef]
- Yang, G.-H.; Yang, L.-T.; Jiang, H.-X.; Li, Y.; Wang, P.; Chen, L.-S. Physiological impacts of magnesium-deficiency in Citrus seedlings: Photosynthesis, antioxidant system and carbohydrates. Trees 2012, 26, 1237–1250. [Google Scholar] [CrossRef]
- Chaudhry, A.H.; Nayab, S.; Hussain, S.B.; Ali, M.; Pan, Z. Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. Int. J. Mol. Sci. 2021, 22, 1819. [Google Scholar] [CrossRef]
- Sattari Vayghan, H.; Nawrocki, W.J.; Schiphorst, C.; Tolleter, D.; Hu, C.; Douet, V.; Glauser, G.; Giovanni, F.; Croce, R.; Wientjes, E.; et al. Photosynthetic light harvesting and thylakoid organization in a CRISPR/Cas9 Arabidopsis thaliana LHCB1 knockout mutant. bioRxiv 2021, 12, 22–473855. [Google Scholar] [CrossRef]
- El-Fouly, M.; Rezk, A.I.; Nofal, O.; Abou El-Nour, E.-Z. Depletion of magnesium in Egyptian soils, its content in crops and estimated needs. Afr. J. Agric. Res. 2010, 5, 1060–1067. [Google Scholar]
- Esteves, E.; Maltais-Landry, G.; Zambon, F.; Ferrarezi, R.S.; Kadyampakeni, D.M. Nitrogen, Calcium, and Magnesium Inconsistently Affect Tree Growth, Fruit Yield, and Juice Quality of Huanglongbing-affected Orange Trees. HortScience 2021, 56, 1269–1277. [Google Scholar] [CrossRef]
- Hu, W.; Yang, B.; He, Z.; Li, G. Magnesium may be a key nutrient mechanism related to Fusarium wilt resistance: A new banana cultivar (Zhongjiao No. 9). PeerJ 2021, 9, e11141. [Google Scholar] [CrossRef] [PubMed]
- Rustioni, L.; Grossi, D.; Brancadoro, L.; Failla, O. Iron, magnesium, nitrogen and potassium deficiency symptom discrimination by reflectance spectroscopy in grapevine leaves. Sci. Hortic. 2018, 241, 152–159. [Google Scholar] [CrossRef]
- Mostafa, E.A.M.; Sakeg, M.M.S.; El-Migeed Abd, M.M.M. Response of banana plants to soil and foliar application of magnesium. Am. Eurasian J. Agric. Environ. Sci. 2007, 2, 141–146. [Google Scholar]
- Fawzi, M.; Shahin, F.; Elham, A.; Kandil, E. Effect of organic, biofertilizers and magnesium sulfate on growth, yield, chemical composition and fruit quality of “Le Conte” pear trees. Nat. Sci. 2010, 8, 273–280. [Google Scholar]
- Hanafy, A.H.; Khalil, M.K.; El-Rahman, A.A.; Nadia, A.M. Effect of magnesium, copper and growth regulators on growth, yield and chemical composition of Washington Navel orange trees. J. Appl. Sci. Res. 2012, 8, 1271–1288. [Google Scholar]
- El-Badawy, H.E.M. Implication of Using Potassium and Magnesium Fertilization to Improve Growth, Yield and Quality of Crimson Seedless Grapes (Vitis vinifera L). J. Plant Prod. Mansoura Univ. 2019, 10, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Artés-Hernández, F.; Tomás-Barberán, F.A.; Artés, F. Modified atmosphere packaging preserves quality of SO2-free ’Superior seedless’ table grapes. Postharvest Biol. Technol. 2006, 39, 146–154. [Google Scholar] [CrossRef]
- Menora, N.; Joshi, V.; Kumar, V.; Vijaya, D.; Debnath, M.; Pattanashe, S.; Padmavatha, A.S.; Variath, M.; Biradar, S.; Khadakabhavi, S. Influence of Rootstock on Bud Break, Period of Anthesis, Fruit Set, Fruit Ripening, Heat Unit Requirement and Berry Yield of Commercial Grape Varieties. Int. J. Plant Breed. Genet. 2015, 9, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Gowda, V.N.; Keshava, S.A.; Shyamalamma, S. Growth, yield and quality of Bangalore Blue grapes as influenced by foliar applied Polyfeed and Multi-K. Acta Hortic. 2008, 785, 207–212. [Google Scholar] [CrossRef]
- Lo’ay, A.A.; Taha, N.A. Evaluation rachis browning phenomena of ‘Superior Seedless’ vines grafted on different rootstocks during shelf life. Sci. Hortic. 2020, 261, 109040. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India (Pvt.) Ltd.: New Delhi, India, 1973. [Google Scholar]
- Black, C.A. Method of Soil Analysis Part 2. Chem. Microbiol. Prop. 1965, 9, 1387–1388. [Google Scholar]
- Christensen, L.P.; Peacock, W.L. Mineral nutrition and fertilization. In Raisin. Production Manual; Christensen, L.P., Ed.; University of California: Oakland, CA, USA, 2000; pp. 102–114. [Google Scholar]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 1989, 975, 384–394. [Google Scholar] [CrossRef]
- DeEll, J.R.; Toivonen, P.M.A. Chlorophyll fluorescence as a nondestructive indicator of broccoli quality during storage in modified atmosphere packaging. HortScience 2000, 35, 256–259. [Google Scholar] [CrossRef] [Green Version]
- Lo’ay, A.A.; El-Ezz, S.F.A.; Awadeen, A.A. Effect of different foliar potassium fertilization forms on vegetative growth, yield, and fruit quality of kaki trees grown in sandy soil. Sci. Hortic. 2021, 288, 110420. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Krauss, S.; Schnitzler, W.H.; Grassmann, J.; Woitke, M. The Influence of Different Electrical Conductivity Values in a Simplified Recirculating Soilless System on Inner and Outer Fruit Quality Characteristics of Tomato. J. Agric. Food Chem. 2006, 54, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Lo’ay, A.A.; Ameer, N.M. Performance of calcium nanoparticles blending with ascorbic acid and alleviation internal browning of ‘Hindi Be-Sennara’ mango fruit at a low temperature. Sci. Hortic. 2019, 254, 199–207. [Google Scholar] [CrossRef]
- Iturbe-Ormaetxe, I.; Escuredo, P.R.; Arrese-Igor, C.; Becana, M. Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 1998, 116, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Lo’ay, A.A.; Doaa, M.H. The potential of vine rootstocks impacts on ‘Flame Seedless’ bunches behavior under cold storage and antioxidant enzyme activity performance. Sci. Hortic. 2020, 260, 108844. [Google Scholar] [CrossRef]
- Pregl, F. Quantitative Organic Micro Analysis, 4th ed.; J. and A. Churchill Ltd.: London, UK, 1945; p. 203. [Google Scholar]
- Snell, F.D.; Snell, C.T. Colorimetric Method of Analysis; D. Van Nostrand Company: Princeton, NJ, USA, 1967; pp. 551–552. [Google Scholar]
- Wilde, A.A.; Corey, R.B.; Lyer, J.G.; Voigt, G.K. Soil and Plant Analysis for Tree Culture, 3rd ed.; Oxford IBH Publishing Co.: New Delhi, India, 1985; pp. 64–115. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- El-Banna, M.F.; Lo’ay, A.A. Evaluation berries shattering phenomena of ‘Flame seedless’ vines grafted on different rootstocks during shelf life. Sci. Hortic. 2019, 246, 51–56. [Google Scholar] [CrossRef]
- Kirkby, E. Chapter 1—Introduction, Definition and Classification of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 3–5. [Google Scholar]
- Härdter, R.; Rex, M.; Orlovius, K. Effects of different Mg fertilizer sources on the magnesium availability in soils. Nutr. Cycl. Agroecosys. 2004, 70, 249–259. [Google Scholar] [CrossRef]
- Tang, M.K.; Mohd, N.; Loong, S.G. Oil palm responses to different sources of magnesium on an inland reworked soil in Peninsular Malaysia. In Proceedings of the 2001 PIPOC International Palm Oil Congress (Agriculture), Kuala Lumpur, Malaysia, 20–23 August 2001; pp. 261–271. [Google Scholar]
- Jayaganesh, S.; Venkatesan, S.; Senthurpandian, V.K. Impact of different sources and doses of magnesium fertilizer on biochemical constituents and quality parameters of black tea. Asian J. Biochem. 2011, 6, 273–281. [Google Scholar] [CrossRef]
- Jezek, M.; Geilfus, C.-M.; Bayer, A.; Mühling, K.-H. Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application. Front. Plant Sci. 2015, 5, 781. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.A.M.; Aml, R.M.; Yousef, D.; Ahmed, M.M.; Abd El-Hady, M. Influence of foliar applications of magnesium sources on improving nutrients status, yield and fruit quality of murcott mandarins. Middle East J. Appl. Sci 2017, 7, 361–372. [Google Scholar]
- Székely, A.; Balota, D.A.; Duchek, J.M.; Nemoda, Z.; Vereczkei, A.; Sasvari Szekely, M. Genetic factors of reaction time performance: DRD47 repeat allele associated with slower responses. Genes Brain Behav. 2011, 10, 129–136. [Google Scholar] [CrossRef]
- Saito, K. Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol. 2004, 136, 2443–2450. [Google Scholar] [CrossRef] [Green Version]
- Dalal, V.K.; Tripathy, B.C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. 2012, 35, 1685–1703. [Google Scholar] [CrossRef]
- Mochizuki, N.; Tanaka, R.; Grimm, B.; Masuda, T.; Moulin, M.; Smith, A.G.; Tanaka, A.; Terry, M.J. The cell biology of tetrapyrroles: A life and death struggle. Trends Plant Sci. 2010, 15, 488–498. [Google Scholar] [CrossRef]
- Harmatys, K.M.; Overchuk, M.; Zheng, G. Rational Design of Photosynthesis-Inspired Nanomedicines. Acc. Chem. Res. 2019, 52, 1265–1274. [Google Scholar] [CrossRef]
- Popescu, M.; Popescu, G.C. Diurnal changes in leaf photosynthesis and relative water content of grapevine. Curr. Trends Nat. Sci. 2014, 3, 74–81. [Google Scholar]
- Wang, J.; Lu, W.; Tong, X.Y.; Yang, Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; He, W.; Mou, S.; Wang, X.; Chen, D.; Hu, X.; Chen, L.; Bai, J. Plant growth and development of pepper seedlings under different photoperiods and photon flux ratios of red and blue LEDs. Trans. Chin. Soc. Agric. Eng. 2017, 33, 173–180. [Google Scholar] [CrossRef]
- Peter, E.; Rothbart, M.; Oelze, M.L.; Shalygo, N.; Dietz, K.J.; Grimm, B. Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions. Plant Cell Physiol. 2010, 51, 1229–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croft, H.; Chen, J.M.; Luo, X.; Bartlett, P.; Chen, B.; Staebler, R.M. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Glob. Change Biol. 2017, 23, 3513–3524. [Google Scholar] [CrossRef] [PubMed]
- Fiedor, L.; Kania, A.; Myśliwa-Kurdziel, B.; Orzeł, Ł.; Stochel, G. Understanding chlorophylls: Central magnesium ion and phytyl as structural determinants. Biochim. Biophys. Acta (BBA)-Bioenerg. 2008, 1777, 1491–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, S. Notes and amendments to the recommendations on manuring of tea in South India. In Handbook of Tea Culture; Section-11; UPASI Tea Research Institute: Valparai, India, 2006. [Google Scholar]
- Stagnari, F.; Onofri, A.; Pisante, M. Response of French bean (Phaseolus vulgaris L.) cultivars to foliar applications of magnesium. Ital. J. Agron. 2009, 3, 101–110. [Google Scholar] [CrossRef]
- Takacs-Hajus, M.; Kiss, A.S. The effect of Mg-sulphate foliar fertilization on economic qualities of different garden pea varieties. Acta Agron. 2004, 363, 44–50. [Google Scholar]
- Roca, M.; Chen, K.; Pérez-Gálvez, A. 6-Chlorophylls. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 125–158. [Google Scholar]
- Broadley, M.R.; Hammond, J.P.; King, G.J.; Astley, D.; Bowen, H.C.; Meacham, M.C.; Mead, A.; Pink, D.A.C.; Teakle, G.R.; Hayden, R.M. Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol. 2008, 146, 1707–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Verbruggen, N.; Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 2013, 368, 87–99. [Google Scholar] [CrossRef]
- Cakmak, I.; Kirkby, E.A. Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol. Plant. 2008, 133, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Shabala, S.; Haiadi, Y. Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 2005, 221, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Lo’ay, A.A.; El-Ezz, S.F.A. Performance of ‘Flame seedless’ grapevines grown on different rootstocks in response to soil salinity stress. Sci. Hortic. 2021, 275, 109704. [Google Scholar] [CrossRef]
- Meireles da Silva, D.; Brandão, I.R.; Alves, J.D.; de Santos, M.O.; de Souza, K.R.D.; de Silveira, H.R.O. Physiological and biochemical impacts of magnesium-deficiency in two cultivars of coffee. Plant Soil 2014, 382, 133–150. [Google Scholar] [CrossRef]
- White, P.J. Chapter 2-Ion Uptake Mechanisms of Individual Cells and Roots: Short-distance Transport. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 7–47. [Google Scholar]
- Jakobsen, S.T. Interaction between Plant Nutrients: III. Antagonism between Potassium, Magnesium and Calcium. Acta Agric. Scand. Sect. B—Soil Plant Sci. 1993, 43, 1–5. [Google Scholar] [CrossRef]
- Karley, A.J.; White, P.J. Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Curr. Opin. Plant Biol. 2009, 12, 291–298. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6-Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. [Google Scholar]
- Bianchi, D.; Grossi, D.; Simone Di Lorenzo, G.; Zi Ying, Y.; Rustioni, L.; Brancadoro, L. Phenotyping of the “G series” Vitis hybrids: First screening of the mineral composition. Sci. Hortic. 2020, 264, 109155. [Google Scholar] [CrossRef]
Soil Analysis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Physical Properties | Soluble Anions (meq L−1) | Soluble Cations(meq L−1) | |||||||||||
Sand % | Clay % | Silt % | Texture | EC dsm−1 | pH | HCO3 | Cl− | SO4 | Na+ | K+ | Mg++ | Ca++ | SAR |
85.8 | 6.90 | 11.30 | Sandy | 4.50 | 7.93 | 2.80 | 14.10 | 13.10 | 25.00 | 3.00 | 3.80 | 12.00 | 8.89 |
Irrigation-Water Analysis | |||||||||||||
- | - | Anions (meq L−1) | Cations (meq L−1) | ||||||||||
pH | EC (dS m−1) 0.85 | CO3- | HCO3− | Cl− | SO4− | Ca++ | Mg++ | Na+ | K+ | - | - | - | |
7.18 | 567 ppm | 0.20 | 2.45 | 0.90 | 1.18 | 1.73 | 0.67 | 2.60 | 0.16 | - | - | - |
- | - | Berry Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | Flowering | Fruit Set | Veraison | At Harvesting | ||||
- | - | Growth Seasons | |||||||
Variables | Treatment | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Chl A | Control | 1.77 ± 0.011 dA * | 1.81 ± 0.005 d | 1.62 ± 0.008 dB | 1.66 ± 0.005 dB | 1.33 ± 0.008 dC | 1.16 ± 0.005 dC | 0.86 ± 0.018 dD | 0.76 ± 0.008 dE |
MgSO4 | 1.87 ± 0.023 cC | 1.91 ± 0.005 cABC | 1.90 ± 0.005 cBC | 1.91 ± 0.008 cABC | 1.93 ± 0.008 cAB | 1.96 ± 0.005 cA | 1.94 ± 0.005 cAB | 1.89 ± 0.005 cBC | |
Mg EDTA | 2.07 ± 0.024 bE | 2.07 ± 0.011 bE | 2.16 ± 0.011 bD | 2.18 ± 0.005 bCD | 2.24 ± 0.026 bABC | 2.26 ± 0.005 bAB | 2.30 ± 0.005 bA | 2.21 ± 0.005 bBCD | |
Mg-NPs | 2.16 ± 0.012 aD | 2.17 ± 0.005 aD | 2.27 ± 0.005 aC | 2.28 ± 0.008 aC | 2.47 ± 0.011 aB | 2.52 ± 0.014 aB | 2.66 ± 0.017 aA | 2.64 ± 0.005 aA | |
Chl b | Control | 0.59 ± 0.008 cB | 0.55 ± 0.005 dB | 0.53 ± 0.011 dBC | 0.51 ± 0.005 dCD | 0.84 ± 0.005 dDE | 0.45 ± 0.005 dEF | 0.43 ± 0.005 dF | 0.39 ± 0.005 dG |
MgSO4 | 0.65 ± 0.011 bB | 0.66 ± 0.005 cB | 0.73 ± 0.028 cAB | 0.71 ± 0.003 cAB | 0.72 ± 0.005 cAB | 0.72 ± 0.028 bAB | 0.73 ± 0.008 cA | 0.65 ± 0.005 cB | |
Mg EDTA | 0.78 ± 0.005 aD | 0.79 ± 0.008 bCD | 0.83 ± 0.011 bBCD | 0.85 ± 0.015 bB | 0.87 ± 0.005 bB | 0.84 ± 0.005 cBC | 0.92 ± 0.015 bA | 0.81 ± 0.005 bBCD | |
Mg-NPs | 0.83 ± 0.012 aD | 0.84 ± 0.012 aD | 0.94 ± 0.005 aC | 0.96 ± 0.012 aC | 0.97 ± 0.005 aC | 0.98 ± 0.012 aBC | 1.04 ± 0.008 aA | 1.03 ± 0.005 aAB | |
Chl A + B | Control | 2.36 ± 0.020 dA | 2.36 ± 0.011 dA | 2.15 ± 0.020 dB | 2.17 ± 0.011 dB | 1.59 ± 0.014 dC | 1.61 ± 0.011 dC | 1.29 ± 0.024 dD | 1.15 ± 0.014 dE |
MgSO4 | 2.52 ± 0.034 cD | 2.57 ± 0.011 cBCD | 2.62 ± 0.033 cABCD | 2.63 ± 0.012 cABCD | 2.65 ± 0.014 cABC | 2.68 ± 0.033 cAB | 2.70 ± 0.014 cA | 2.54 ± 0.011 cCD | |
Mg EDTA | 2.85 ± 0.029 bD | 2.86 ± 0.020 dD | 2.99 ± 0.017 bC | 3.03 ± 0.020 bBC | 3.11 ± 0.032 bBC | 3.10 ± 0.011 bB | 3.22 ± 0.020 bA | 3.02 ± 0.011 bBC | |
Mg-NPs | 2.99 ± 0.023 aD | 3.01 ± 0.017 aD | 3.21 ± 0.032 aC | 3.25 ± 0.020 aC | 3.44 ± 0.017 aB | 3.51 ± 0.026 aB | 3.70 ± 0.026 aA | 3.67 ± 0.011 aA | |
Chl A:B | Control | 2.98 ± 0.027 aB | 3.29 ± 0.023 aA | 3.07 ± 0.052 aB | 3.25 ± 0.026 aA | 2.32 ± 0.010 aD | 2.57 ± 0.020 aC | 2.01 ± 0.020 aE | 1.96 ± 0.006 aE |
MgSO4 | 2.87 ± 0.014 bA | 2.89 ± 0.014 bA | 2.63 ± 0.092 bB | 2.67 ± 0.003 bAB | 2.68 ± 0.008 bAB | 2.72 ± 0.095 aAB | 2.54 ± 0.020 aB | 2.91 ± 0.017 bA | |
Mg EDTA | 2.66 ± 0.020 cAB | 2.61 ± 0.015 cABC | 2.60 ± 0.028 bABC | 2.56 ± 0.038 bBC | 2.57 ± 0.013 bAB | 2.69 ± 0.011 aAB | 2.50 ± 0.035 aC | 2.73 ± 0.011 cA | |
Mg-NPs | 2.63 ± 0.049 cA | 2.57 ± 0.030 cA | 2.42 ± 0.015 bB | 2.36 ± 0.021 cB | 2.54 ± 0.003 cA | 2.57 ± 0.015 aA | 2.55 ± 0.008 bA | 2.56 ± 0.008 dA |
- | - | Berry Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | Flowering | Fruit Set | Veraison | At Harvesting | ||||
- | - | Growth Seasons | |||||||
Variables | Treatment | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Car | Control | 2.18 ± 0.017 dC * | 2.23 ± 0.005 dBC | 2.23 ± 0.005 dBC | 2.28 ± 0.005 dAB | 2.31 ± 0.032 cA | 2.33 ± 0.005 dA | 2.20 ± 0.005 dC | 2.17 ± 0.012 dC |
MgSO4 | 2.26 ± 0.008 cE | 2.28 ± 0.014 cDE | 2.31 ± 0.008 cCD | 2.34 ± 0.005 cBC | 2.37 ± 0.008 cAB | 2.39 ± 0.008 cA | 2.39 ± 0.005 cA | 2.37 ± 0.005 cAB | |
Mg EDTA | 2.60 ± 0.014 bC | 2.66 ± 0.008 bBC | 2.64 ± 0.008 bB | 2.67 ± 0.008 bB | 2.69 ± 0.005 bB | 2.76 ± 0.005 bA | 2.72 ± 0.008 bA | 2.73 ± 0.012 bA | |
Mg-NPs | 2.79 ± 0.011 aE | 2.81 ± 0.008 aE | 2.94 ± 0.008 aD | 3.07 ± 0.011 aC | 3.16 ± 0.008 aB | 3.19 ± 0.008 aB | 3.40 ± 0.020 aA | 3.36 ± 0.017 aA | |
Chl:Carratio | Control | 1.08 ± 0.000 aA | 1.05 ± 0.003 cA | 0.96 ± 0.012 cB | 0.95 ± 0.003 cB | 0.69 ± 0.015 cC | 0.69 ± 0.003 bC | 0.59 ± 0.012 cD | 0.53 ± 0.003 cE |
MgSO4 | 1.11 ± 0.012 aA | 1.12 ± 0.003 aA | 1.13 ± 0.008 aA | 1.12 ± 0.003 aA | 1.11 ± 0.003 abA | 1.12 ± 0.010 aA | 1.13 ± 0.015 bA | 1.07 ± 0.003 bB | |
Mg EDTA | 1.09 ± 0.017 aCD | 1.07 ± 0.003 bD | 1.13 ± 0.008 aB | 1.13 ± 0.003 aB | 1.15 ± 0.014 aB | 1.12 ± 0.003 aBC | 1.18 ± 0.003 aA | 1.10 ± 0.003 aBCD | |
Mg-NPs | 1.07 ± 0.005 aAB | 1.06 ± 0.003 bcAB | 1.09 ± 0.010 bAB | 1.06 ± 0.000 bB | 1.08 ± 0.003 bAB | 1.10 ± 0.005 aA | 1.08 ± 0.014 bAB | 1.09 ± 0.003 aAB |
- | - | Berry Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | Flowering | Fruit Set | Veraison | At Harvesting | ||||
- | - | Growth Seasons | |||||||
Variables | Treatment | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Fv/Fm | Control | 0.806 ± 0.00 dA * | 0.800 ± 0.00 dAB | 0.780 ± 0.00 dABC | 0.743 ± 0.02 bC | 0.756 ± 0.00 dBC | 0.740 ± 0.00 dC | 0.670 ± 0.00 dD | 0.660 ± 0.00 dD |
MgSO4 | 0.820 ± 0.00 cA | 0.810 ± 0.00 cB | 0.793 ± 0.00 cC | 0.776 ± 0.00 bDE | 0.780 ± 0.00 cD | 0.756 ± 0.00 cF | 0.770 ± 0.00 cE | 0.740 ± 0.00 cG | |
Mg EDTA | 0.853 ± 0.00 bA | 0.860 ± 0.00 bA | 0.840 ± 0.00 bA | 0.820 ± 0.02 abAB | 0.813 ± 0.00 bAB | 0.830 ± 0.00 bA | 0.780 ± 0.00 bBC | 0.770 ± 0.00 bC | |
Mg-NPs | 0.870 ± 0.00 aABC | 0.860 ± 0.00 aAB | 0.880 ± 0.00 aA | 0.860 ± 0.01 aBC | 0.880 ± 0.00 aA | 0.870 ± 0.00 aABC | 0.870 ± 0.00 aABC | 0.856 ± 0.00 aC | |
Fm | Control | 1697.33 ± 2.18 dA | 1702.33 ± 1.45 dA | 1626.67 ± 3.38 dB | 1603.33 ± 1.20 dC | 1591.00 ± 1.154 dD | 1494.67 ± 2.60 dF | 1556.33 ± 1.76 dE | 1442.00 ± 0.55 dg |
MgSO4 | 1738.33 ± 3.17 cG | 1739.33 ± 0.88 cG | 1886.33 ± 1.76 cD | 1805.33 ± 2.60 cF | 1955.00 ± 2.309 cC | 1851.66 ± 1.20 cE | 2020.33 ± 0.88 cA | 1992.00 ± 1.52 cB | |
Mg EDTA | 1990.67 ± 1.20 bF | 1995.00 ± 0.57 bF | 2015.66 ± 1.76 bE | 2105.67 ± 2.84 bD | 2193.00 ± 2.309 bD | 2222.66 ± 0.88 bB | 2205.67 ± 1.76 bC | 2314.66 ± 2.02 bA | |
Mg-NPs | 2137.34 ± 3.33 aH | 2152.00 ± 1.52 aG | 2359.00 ± 1.15 aF | 2413.00 ± 1.15 aE | 2585.33 ± 1.452 aD | 2604.67 ± 2.02 aB | 2595.33 ± 1.85 aC | 2664.00 ± 1.52 aA | |
F0 | Control | 364.00 ± 1.52 cB | 372.00 ± 1.52 dA | 357.66 ± 1.76 dB | 362.00 ± 0.57 dB | 304.33 ± 1.763 dD | 332.00 ± 0.57 dC | 296.00 ± 2.51 dE | 285.66 ± 1.20 dF |
MgSO4 | 393.00 ± 1.15 bF | 403.00 ± 1.52 cE | 407.33 ± 1.20 cDE | 414.00 ± 1.52 cBC | 420.00 ± 1.527 cAB | 426.00 ± 0.57 cA | 412.00 ± 0.57 cCD | 417.66 ± 1.45 cBC | |
Mg EDTA | 422.66 ± 11.34 aD | 442.33 ± 1.20 bCD | 459.00 ± 1.15 bBC | 457.33 ± 1.85 bBC | 517.33 ± 2.333 bBC | 474.00 ± 1.52 bB | 532.66 ± 0.88 bA | 457.00 ± 1.15 bBC | |
Mg-NPs | 441.00 ± 1.15 aH | 461.66 ± 0.88 aG | 552.66 ± 1.45 aE | 526.33 ± 2.40 aF | 792.33 ± 1.201 aC | 693.33 ± 1.76 aD | 817.66 ± 2.60 aB | 827.00 ± 2.51 aA |
- | - | Berry Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | Flowering | Fruit Set | Veraison | At Harvesting | ||||
- | - | Growth Seasons | |||||||
Variables | Treatment | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Leaf area (cm2) | Control | 105.20 ± 0.883 dF * | 113.02 ± 1.229 dE | 116.11 ± 1.790 dDE | 120.14 ± 0.586 dCD | 125.41 ± 1.469 dBC | 126.69 ± 0.904 dAB | 129.94 ± 0.560 dAB | 131.94 ± 0.589 dA |
MgSO4 | 115.15 ± 1.212 bE | 123.72 ± 1.212 cD | 125.18 ± 0.600 cD | 129.22 ± 0.586 cC | 135.21 ± 0.873 cB | 139.56 ± 0.583 cA | 140.65 ± 0.589 cA | 141.94 ± 0.335 cA | |
Mg EDTA | 128.32 ± 0.892 cE | 132.64 ± 0.562 bD | 137.85 ± 0.580 bC | 139.75 ± 0.580 bC | 142.00 ± 1.216 bC | 148.78 ± 0.331 bB | 150.79 ± 0.898 bB | 154.43 ± 0.574 bA | |
Mg-NPs | 139.53 ± 0.881 aE | 143.26 ± 0.885 aE | 149.60 ± 2.623 aD | 153.00 ± 1.460 aCD | 154.87 ± 1.212 cBCD | 159.14 ± 0.554 aBC | 160.75 ± 0.586 aAB | 166.40 ± 0.580 aA | |
Shoot carbohydratecontent % | Control | 19.56 ± 0.591 cD | 21.64 ± 0.568 cCD | 21.82 ± 0.597 dCD | 22.74 ± 0.568 cC | 24.45 ± 0.565 cBC | 26.45 ± 0.580 dB | 26.62 ± 0.597 cB | 29.64 ± 0.565 dA |
MgSO4 | 23.20 ± 0.580 cD | 26.34 ± 0.588 bC | 26.66 ± 0.591 cC | 30.96 ± 0.328 bB | 30.55 ± 0.583 bB | 32.66 ± 0.580 cAB | 32.35 ± 0.586 bAB | 34.36 ± 0.597 cA | |
Mg EDTA | 27.88 ± 1.208 bD | 29.35 ± 0.574 bD | 30.75 ± 0.566 bCD | 32.66 ± 0.346 bBC | 32.92 ± 0.591 bBC | 35.74 ± 0.594 bAB | 34.65 ± 0.571 bAB | 37.67 ± 0.594 bA | |
Mg-NPs | 33.45 ± 1.169 aD | 33.45 ± 1.169 aD | 36.63 ± 0.560 aCD | 39.74 ± 0.560 aBC | 40.87 ± 0.586 aB | 42.95 ± 0.583 aAB | 41.94 ± 0.586 aAB | 45.57 ± 0.583 aA | |
Ion leakage % | Control | 12.29 ± 0.502 aC | 12.67 ± 0.617 aBC | 14.65 ± 0.566 aBC | 15.10 ± 0.345 aAB | 22.57 ± 0.580 aA | 23.93 ± 0.591 aA | 28.76 ± 0.673 aC | 30.72 ± 0.671 aC |
MgSO4 | 10.33 ± 0.494 abE | 11.14 ± 0.447 aDE | 13.58 ± 0.574 abCD | 13.27 ± 0.330 bBC | 19.73 ± 0.560 bAB | 19.95 ± 0.332 bA | 24.58 ± 0.583 bA | 28.97 ± 0.377 aAB | |
Mg EDTA | 8.36 ± 0.565 bC | 9.25 ± 0.577 bB | 11.27 ± 0.586 bB | 10.68 ± 0.340 cB | 15.84 ± 0.600 cB | 17.19 ± 1.323 bA | 21.05 ± 0.600 cA | 20.73 ± 0.333 bA | |
Mg-NPs | 5.07 ± 0.048 cE | 4.99 ± 0.058 cE | 6.04 ± 0.338 cD | 6.10 ± 0.336 dC | 7.25 ± 0.571 dB | 6.84 ± 0.310 cB | 10.56 ± 0.588 dA | 8.64 ± 0.588 cA | |
Malondialdehyde (MDA; ηM g−1 FW) | Control | 0.15 ± 0.005 aD | 0.16 ± 0.003 aD | 0.20 ± 0.005 aC | 0.21 ± 0.005 aC | 0.24 ± 0.005 aB | 0.25 ± 0.005 aB | 0.29 ± 0.005 aA | 0.31 ± 0.008 aA |
MgSO4 | 0.13 ± 0.003 abE | 0.14 ± 0.005 aE | 0.17 ± 0.005 bD | 0.18 ± 0.005 bD | 0.22 ± 0.005 aC | 0.23 ± 0.005 aC | 0.26 ± 0.005 bB | 0.28 ± 0.003 aA | |
Mg EDTA | 0.11 ± 0.003 bD | 0.11 ± 0.005 bCD | 0.13 ± 0.003 cBCD | 0.14 ± 0.005 cBC | 0.14 ± 0.005 bBC | 0.20 ± 0.005 bA | 0.15 ± 0.005 cB | 0.21 ± 0.005 bA | |
Mg-NPs | 0.09 ± 0.005 cBC | 0.08 ± 0.005 cC | 0.10 ± 0.005 dBC | 0.09 ± 0.005 dBC | 0.11 ± 0.005 cAB | 0.11 ± 0.005 cAB | 0.13 ± 0.005 dA | 0.13 ± 0.005 cA |
- | - | Berry Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | Flowering | Fruit Set | Veraison | At Harvesting | ||||
- | - | Growth Seasons | |||||||
Variables | Treatment | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
N% | Control | 2.57 ± 0.014 dA * | 2.48 ± 0.017 cA | 2.64 ± 0.012 dA | 2.76 ± 0.015 dA | 2.76 ± 0.005 cA | 2.56 ± 0.177 bA | 2.61 ± 0.008 dA | 2.58 ± 0.005 dA |
MgSO4 | 2.67 ± 0.008 cE | 2.77 ± 0.017 bBCD | 2.75 ± 0.011 cCD | 2.87 ± 0.012 cA | 2.80 ± 0.005 cBC | 2.80 ± 0.008 bB | 2.73 ± 0.008 cD | 2.65 ± 0.008 bE | |
Mg EDTA | 2.79 ± 0.011 bCD | 2.82 ± 0.012 bBCD | 2.90 ± 0.012 bABC | 2.93 ± 0.014 bAB | 3.00 ± 0.014 bAB | 2.98 ± 0.063 abA | 2.85 ± 0.014 bBC | 2.72 ± 0.012 cD | |
Mg-NPs | 2.85 ± 0.014 aF | 3.01 ± 0.018 aD | 2.98 ± 0.015 aDE | 3.10 ± 0.005 aC | 3.10 ± 0.008 aC | 3.26 ± 0.012 aA | 2.93 ± 0.008 aE | 3.17 ± 0.012 aB | |
P% | Control | 0.13 ± 0.005 dC | 0.14 ± 0.005 dBC | 0.16 ± 0.005 dABC | 0.17 ± 0.005 dAB | 0.17 ± 0.008 dA | 0.19 ± 0.005 dA | 0.18 ± 0.008 cA | 0.17 ± 0.005 dAB |
MgSO4 | 0.20 ± 0.005 cB | 0.21 ± 0.005 cAB | 0.22 ± 0.005 cAB | 0.23 ± 0.005 cAB | 0.24 ± 0.005 cA | 0.24 ± 0.005 cA | 0.21 ± 0.008 cAB | 0.20 ± 0.005 cB | |
Mg EDTA | 0.25 ± 0.005 bCD | 0.25 ± 0.005 bCD | 0.27 ± 0.005 bCD | 0.28 ± 0.005 bAB | 0.29 ± 0.005 bAB | 0.30 ± 0.005 bA | 0.26 ± 0.005 bBCD | 0.24 ± 0.005 bD | |
Mg-NPs | 0.30 ± 0.005 aD | 0.32 ± 0.005 aCD | 0.33 ± 0.005 aC | 0.34 ± 0.005 aBC | 0.37 ± 0.005 aA | 0.38 ± 0.005 aA | 0.33 ± 0.005 aC | 0.36 ± 0.005 aAB | |
K% | Control | 1.53 ± 0.008 dC | 1.60 ± 0.008 dB | 1.59 ± 0.011 dB | 1.66 ± 0.005 dA | 1.60 ± 0.005 dB | 1.69 ± 0.008 dA | 1.54 ± 0.008 dC | 1.44 ± 0.008 dD |
MgSO4 | 1.62 ± 0.005 cE | 1.70 ± 0.005 cC | 1.67 ± 0.005 cCD | 1.74 ± 0.015 cAB | 1.70 ± 0.008 cBC | 1.77 ± 0.005 cA | 1.64 ± 0.005 cDE | 1.55 ± 0.005 cF | |
Mg EDTA | 1.71 ± 0.008 bB | 1.74 ± 0.005 bB | 1.75 ± 0.005 bB | 1.81 ± 0.008 bA | 1.80 ± 0.005 bA | 1.84 ± 0.012 bA | 1.75 ± 0.011 bB | 1.63 ± 0.017 bC | |
Mg-NPs | 1.78 ± 0.008 aE | 1.85 ± 0.012 aD | 1.80 ± 0.005 aE | 1.91 ± 0.005 aC | 1.86 ± 0.008 aD | 2.03 ± 0.014 aA | 1.81 ± 0.005 aE | 1.96 ± 0.008 aB |
- | - | Berry Developmental Stages | |||||||
---|---|---|---|---|---|---|---|---|---|
- | - | Flowering | Fruit Set | Veraison | At Harvesting | ||||
- | - | Growth Seasons | |||||||
Variables | Treatment | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 |
Mg% | Control | 0.31 ± 0.008 dA * | 0.32 ± 0.005 dA | 0.30 ± 0.008 cAB | 0.30 ± 0.005 dAB | 0.25 ± 0.009 dC | 0.27 ± 0.005 dBC | 0.21 ± 0.007 dD | 0.21 ± 0.008 dD |
MgSO4 | 0.64 ± 0.008 cE | 0.65 ± 0.005 cE | 0.71 ± 0.008 cbD | 0.70 ± 0.005 cD | 0.77 ± 0.009 cBC | 0.76 ± 0.005 cC | 0.81 ± 0.007 cA | 0.80 ± 0.008 cB | |
Mg EDTA | 0.70 ± 0.008 bD | 0.71 ± 0.005 bD | 0.88 ± 0.008 aB | 0.79 ± 0.005 bC | 0.91 ± 0.009 bC | 0.89 ± 0.005 bB | 0.96 ± 0.007 bA | 0.97 ± 0.008 bA | |
Mg-NPs | 0.78 ± 0.008 aE | 0.79 ± 0.005 aE | 0.91 ± 0.008 aD | 0.94 ± 0.005 aCD | 0.97 ± 0.005 aC | 1.07 ± 0.005 aB | 1.04 ± 0.007 aB | 1.13 ± 0.008 aA | |
Ca% | Control | 2.27 ± 0.008 dD | 2.30 ± 0.007 dCD | 2.32 ± 0.005 dBC | 2.33 ± 0.005 dBC | 2.38 ± 0.015 dA | 2.36 ± 0.005 dAB | 2.32 ± 0.008 dBC | 2.29 ± 0.008 cCD |
MgSO4 | 2.35 ± 0.008 cC | 2.39 ± 0.007 cB | 2.44 ± 0.005 cB | 2.43 ± 0.011 cB | 2.51 ± 0.005 cA | 2.52 ± 0.008 cA | 2.49 ± 0.005 cA | 2.44 ± 0.005 bcB | |
Mg EDTA | 2.44 ± 0.008 bA | 2.49 ± 0.007 bA | 2.54 ± 0.005 bA | 2.52 ± 0.008 bA | 2.65 ± 0.011 bA | 2.59 ± 0.008 bA | 2.61 ± 0.005 bA | 2.60 ± 0.098 abA | |
Mg-NPs | 2.58 ± 0.008 aF | 2.65 ± 0.007 aE | 2.68 ± 0.014 aDE | 2.72 ± 0.005 aCD | 2.75 ± 0.017 aBC | 2.81 ± 0.012 aA | 2.80 ± 0.005 aAB | 2.82 ± 0.005 aA | |
Cl% | Control | 1.24 ± 0.014 aE | 1.25 ± 0.005 aE | 1.31 ± 0.008 aD | 1.35 ± 0.005 aCD | 1.39 ± 0.015 aBC | 1.38 ± 0.012 aBC | 1.41 ± 0.014 aAB | 1.45 ± 0.005 aA |
MgSO4 | 1.23 ± 0.008 aC | 1.23 ± 0.005 aC | 1.26 ± 0.005 bC | 1.26 ± 0.005 bC | 1.30 ± 0.005 bB | 1.30 ± 0.005 bB | 1.34 ± 0.005 bA | 1.34 ± 0.008 bA | |
Mg EDTA | 1.19 ± 0.005 abD | 1.20 ± 0.005 bCD | 1.22 ± 0.005 cC | 1.22 ± 0.005 cC | 1.24 ± 0.005 cC | 1.28 ± 0.005 bA | 1.25 ± 0.005 cB | 1.29 ± 0.005 cA | |
Mg-NPs | 1.13 ± 0.021 bB | 1.12 ± 0.005 cB | 1.19 ± 0.005 cA | 1.13 ± 0.005 dB | 1.22 ± 0.005 cA | 1.20 ± 0.005 cA | 1.23 ± 0.005 cA | 1.23 ± 0.005 dA | |
Na% | Control | 0.40 ± 0.005 aE | 0.42 ± 0.005 aDE | 0.43 ± 0.005 aD | 0.44 ± 0.005 aCD | 0.46 ± 0.005 aBC | 0.46 ± 0.005 aBC | 0.48 ± 0.005 aAB | 0.49 ± 0.005 aA |
MgSO4 | 0.39 ± 0.005 abD | 0.39 ± 0.005 bD | 0.42 ± 0.005 aBC | 0.41 ± 0.005 bCD | 0.44 ± 0.005 aAB | 0.43 ± 0.005 bABC | 0.45 ± 0.003 bA | 0.45 ± 0.005 bA | |
Mg EDTA | 0.36 ± 0.005 bC | 0.37 ± 0.005 bC | 0.38 ± 0.005 bBC | 0.38 ± 0.005 cBC | 0.39 ± 0.008 bBC | 0.40 ± 0.005 cAB | 0.40 ± 0.003 cAB | 0.42 ± 0.005 cA | |
Mg-NPs | 0.31 ± 0.008 cBC | 0.30 ± 0.005 cC | 0.33 ± 0.005 cABC | 0.32 ± 0.005 dBC | 0.34 ± 0.005 cAB | 0.33 ± 0.005 dABC | 0.35 ± 0.005 dA | 0.34 ± 0.005 dAB |
Treatments | Cluster Weight (Kg) | Cluster Number Vine−1 | Yield Vine−1 (Kg) | Wood Pruned Weight (Kg) | Berry Weight (g) | Berry Size (Cm3) | Total Soluble Solid (SSC %) | Total Acidity (TA %) | SSC:TA-Ratio | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Yield and Berry Properties | Berry Juice Proprieties | ||||||||||
Control | 0.440 ± 0.002 d | 13.56 ± 0.233 c | 5.91 ± 0.073 d | 14.19 ± 0.134 d | 3.46 ± 0.029 d | 3.31 ± 0.008 d | 15.95 ± 0.014 d | 0.713 ± 0.001 a | 22.35 ± 0.062 d | 0.713 ± 0.001 a | 22.35 ± 0.062 d |
MgSO4 | 0.502 ± 0.003 c | 14.71 ± 0.020 b | 7.39 ± 0.055 c | 14.67 ± 0.023 c | 3.85 ± 0.020 c | 3.66 ± 0.005 c | 16.71 ± 0.028 b | 0.684 ± 0.002 c | 24.41 ± 0.029 b | 0.684 ± 0.002 c | 24.41 ± 0.029 b |
Mg-EDTA | 0.525 ± 0.002 b | 15.51 ± 0.340 a | 8.15 ± 0.210 b | 15.94 ± 0.086 b | 4.16 ± 0.029 b | 4.17 ± 0.023 b | 16.33 ± 0.014 c | 0.699 ± 0.000 b | 23.36 ± 0.020 c | 0.699 ± 0.000 b | 23.36 ± 0.020 c |
Mg-Nano | 0.582 ± 0.002 a | 15.98 ± 0.015 a | 9.13 ± 0.038 a | 16.85 ± 0.272 a | 4.67 ± 0.021 a | 4.56 ± 0.008 a | 17.38 ± 0.038 a | 0.661 ± 0.000 d | 26.30 ± 0.066 a | 0.661 ± 0.000 d | 26.30 ± 0.066 a |
Variables | MD−Index | Chl A | Chl B | Chl A+ B | Chl A:B | Caro | Chls:Caro | Fv/Fm | Fm | F0 | Leaf Area | Shoot Car. | IL% | MDA | N% | P% | K% | Ca% | Mg% | Cl% | Na% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MD−index | * 1.0000 | ||||||||||||||||||||
Chl A | −0.7543 | 1.0000 | |||||||||||||||||||
Chl B | −0.6424 | 0.9441 | 1.0000 | ||||||||||||||||||
Chl A+ B | −0.7307 | 0.9955 | 0.9712 | 1.0000 | |||||||||||||||||
Chl A:B | −0.3765 | 0.2037 | −0.1244 | 0.1114 | 1.0000 | ||||||||||||||||
Caro | −0.4960 | 0.8004 | 0.8970 | 0.8375 | −0.2487 | 1.0000 | |||||||||||||||
Chls:Caro | −0.7281 | 0.8552 | 0.7100 | 0.8232 | 0.4610 | 0.3803 | 1.0000 | ||||||||||||||
Fv/Fm | −0.8758 | 0.8250 | 0.7977 | 0.8267 | 0.1369 | 0.7291 | 0.6523 | 1.0000 | |||||||||||||
Fm | −0.5258 | 0.8958 | 0.9557 | 0.9234 | −0.1487 | 0.9469 | 0.5785 | 0.7285 | 1.0000 | ||||||||||||
F0 | −0.4961 | 0.8148 | 0.8561 | 0.8361 | −0.0965 | 0.9203 | 0.4576 | 0.6603 | 0.9097 | 1.0000 | |||||||||||
Leaf Area | −0.1279 | 0.6528 | 0.8011 | 0.7032 | −0.4336 | 0.8714 | 0.2790 | 0.4121 | 0.8757 | 0.7871 | 1.0000 | ||||||||||
Shoot Car | −0.2059 | 0.6896 | 0.8255 | 0.7368 | −0.3968 | 0.8856 | 0.3232 | 0.4662 | 0.8955 | 0.8277 | 0.9790 | 1.0000 | |||||||||
IL% | 0.9348 | −0.6787 | −0.6213 | −0.6700 | −0.2364 | −0.5626 | −0.5611 | −0.9008 | −0.5262 | −0.5085 | −0.1789 | −0.2593 | 1.0000 | ||||||||
MDA | 0.9291 | −0.7360 | −0.7122 | −0.7377 | −0.1362 | −0.6206 | −0.6101 | −0.9185 | −0.5984 | −0.5474 | −0.2709 | −0.3283 | 0.9527 | 1.0000 | |||||||
N% | −0.4926 | 0.7260 | 0.8258 | 0.7632 | −0.2568 | 0.8262 | 0.4332 | 0.6697 | 0.8156 | 0.7583 | 0.7545 | 0.7847 | −0.5803 | −0.6122 | 1.0000 | ||||||
P% | −0.4905 | 0.7736 | 0.8962 | 0.8180 | −0.3349 | 0.9253 | 0.4230 | 0.7248 | 0.9070 | 0.8319 | 0.8593 | 0.8810 | −0.5735 | −0.6271 | 0.9067 | 1.0000 | |||||
K% | −0.5934 | 0.7846 | 0.8409 | 0.8099 | −0.1109 | 0.8390 | 0.5053 | 0.7460 | 0.8091 | 0.7626 | 0.7150 | 0.7489 | −0.6685 | −0.6911 | 0.9052 | 0.9047 | 1.0000 | ||||
Ca% | −0.4310 | 0.8136 | 0.9189 | 0.8534 | −0.2780 | 0.9441 | 0.4630 | 0.6707 | 0.9491 | 0.8796 | 0.9144 | 0.9243 | −0.4833 | −0.5620 | 0.8649 | 0.9440 | 0.8655 | 1.0000 | |||
Mg% | −0.5068 | 0.9090 | 0.9481 | 0.9308 | −0.1059 | 0.8098 | 0.7315 | 0.6645 | 0.9205 | 0.7906 | 0.8300 | 0.8466 | −0.4472 | −0.5441 | 0.7670 | 0.8473 | 0.7656 | 0.8847 | 1.0000 | ||
Cl% | 0.8988 | −0.7761 | −0.7405 | −0.7748 | −0.1586 | −0.5961 | −0.7000 | −0.8990 | −0.6271 | −0.4973 | −0.3131 | −0.3722 | 0.8944 | 0.9394 | −0.5932 | −0.6408 | −0.6783 | −0.5710 | −0.6240 | 1.0000 | |
Na% | 0.8310 | −0.7779 | −0.7937 | −0.7915 | −0.0073 | −0.7709 | −0.5462 | −0.9271 | −0.7360 | −0.6594 | −0.4830 | −0.5469 | 0.9058 | 0.9311 | −0.7271 | −0.7797 | −0.7809 | −0.7134 | −0.6535 | 0.9181 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ezz, S.F.A.; A., L.A.; Al-Harbi, N.A.; Al-Qahtani, S.M.; Allam, H.M.; Abdein, M.A.; Abdelgawad, Z.A. A Comparison of the Effects of Several Foliar Forms of Magnesium Fertilization on ‘Superior Seedless’ (Vitis vinifera L.) in Saline Soils. Coatings 2022, 12, 201. https://doi.org/10.3390/coatings12020201
El-Ezz SFA, A. LA, Al-Harbi NA, Al-Qahtani SM, Allam HM, Abdein MA, Abdelgawad ZA. A Comparison of the Effects of Several Foliar Forms of Magnesium Fertilization on ‘Superior Seedless’ (Vitis vinifera L.) in Saline Soils. Coatings. 2022; 12(2):201. https://doi.org/10.3390/coatings12020201
Chicago/Turabian StyleEl-Ezz, Sally F. Abo, Lo’ay A. A., Nadi Awad Al-Harbi, Salem Mesfir Al-Qahtani, Hitham M. Allam, Mohamed A. Abdein, and Zinab A. Abdelgawad. 2022. "A Comparison of the Effects of Several Foliar Forms of Magnesium Fertilization on ‘Superior Seedless’ (Vitis vinifera L.) in Saline Soils" Coatings 12, no. 2: 201. https://doi.org/10.3390/coatings12020201
APA StyleEl-Ezz, S. F. A., A., L. A., Al-Harbi, N. A., Al-Qahtani, S. M., Allam, H. M., Abdein, M. A., & Abdelgawad, Z. A. (2022). A Comparison of the Effects of Several Foliar Forms of Magnesium Fertilization on ‘Superior Seedless’ (Vitis vinifera L.) in Saline Soils. Coatings, 12(2), 201. https://doi.org/10.3390/coatings12020201