Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation and Characterization of NS Samples
2.3. Harvest and Enumeration of Spores
2.4. Photocatalytic Inactivation of Spores
2.5. Analysis
3. Results
3.1. Catalyst Characterization
3.2. Preparation of Pure Bacterial Spores
3.3. Inactivation Efficiency of Spores
3.4. Mechanism of Spore Inactivation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalrymple, O.K.; Stefanakos, E. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. [Google Scholar] [CrossRef]
- Li, G.-Q.; Huo, Z.-Y. Synergistic effect of combined UV-LED and chlorine treatment on Bacillus subtilis spore inactivation. Sci. Total Environ. 2018, 639, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Makky, E.A.; Park, G.-S. Comparison of Fe (VI)(FeO42-) and ozone in inactivating Bacillus subtilis spores. Chemosphere 2011, 83, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Cao, S. Inactivation of chlorine-resistant bacterial spores in drinking water using UV irradiation, UV/Hydrogen peroxide and UV/Peroxymonosulfate: Efficiency and mechanism. J. Clean. Prod. 2020, 243, 118666. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, C. Photocatalytic water purification with graphitic C3N4-based composites: Enhancement, mechanisms, and performance. Appl. Mater. Today 2021, 24, 101118. [Google Scholar] [CrossRef]
- Chen, R.; Li, J. Photocatalytic reaction mechanisms at the gas-solid interface for typical air pollutants decomposition. J. Mater. Chem. A 2021, 9, 20184–20210. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Z. Photocatalytic degradation of (micro) plastics using TiO2-based and other catalysts: Properties, influencing factor, and mechanism. Environ. Res. 2022, 112729. [Google Scholar] [CrossRef]
- Chen, Y.; Ng, T.W. Comparative study of visible-light-driven photocatalytic inactivation of two different wastewater bacteria by natural sphalerite. Chem. Eng. J. 2013, 234, 43–48. [Google Scholar] [CrossRef]
- De Gutiérrez, R.M.; Villaquirán-Caicedo, M. Evaluation of the antibacterial activity of a geopolymer mortar based on metakaolin supplemented with TiO2 and CuO particles using glass waste as fine aggregate. Coatings 2020, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Liu, C. Nontoxic carbon quantum dots/g-C3N4 for efficient photocatalytic inactivation of staphylococcus aureus under visible light. Adv. Healthc. Mater. 2019, 8, 1801534. [Google Scholar] [CrossRef]
- Ghodsi, S.; Esrafili, A. Synthesis and application of g-C3N4/Fe3O4/Ag nanocomposite for the efficient photocatalytic inactivation of Escherichia coli and Bacillus subtilis bacteria in aqueous solutions. AMB Express 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, R. Visible-Light-Driven Ag-Modified TiO2 Thin Films Anchored on Bamboo Material with Antifungal Memory Activity against Aspergillus niger. J. Fungi 2021, 7, 592. [Google Scholar] [CrossRef] [PubMed]
- Su, S.-F.; Ye, L.-M. Photoelectrocatalytic inactivation of Penicillium expansum spores on a Pt decorated TiO2/activated carbon fiber photoelectrode in an all-solid-state photoelectrochemical cell. Appl. Surf. Sci. 2020, 515, 145964. [Google Scholar] [CrossRef]
- Tang, X.; Tang, R. Application of natural minerals in photocatalytic degradation of organic pollutants: A review. Sci. Total Environ. 2021, 152434. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Chen, X. Natural sphalerite nanoparticles can accelerate horizontal transfer of plasmid-mediated antibiotic-resistance genes. Environ. Int. 2020, 136, 105497. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, A. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 2011, 45, 5689–5695. [Google Scholar] [CrossRef]
- Moradi, M.; Kalantary, R.R. Visible light photocatalytic inactivation of Escherichia coli by natural pyrite assisted by oxalate at neutral pH. J. Mol. Liq. 2017, 248, 880–889. [Google Scholar] [CrossRef]
- Peng, X.; Ng, T.W. Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite. Chemosphere 2017, 166, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, H. Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms. Water Res. 2019, 157, 106–118. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms. Water Res. 2020, 176, 115746. [Google Scholar] [CrossRef]
- Latif, A.; Kai, S. Catalytic degradation of organic pollutants in Fe(III)/peroxymonosulfate (PMS) system: Performance, influencing factors, and pathway. Environ. Sci. Pollut. Res. 2019, 26, 36410–36422. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y. Photocatalytic reduction of carbon tetrachloride by natural sphalerite under visible light irradiation. Sol. Energy Mater. Sol. Cells 2011, 95, 1915–1921. [Google Scholar] [CrossRef]
- Wu, D.; Wang, W. Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation. J. Mater. Chem. A 2016, 4, 1052–1059. [Google Scholar] [CrossRef]
- Kort, R.; O’brien, A.C. Assessment of heat resistance of bacterial spores from food product isolates by fluorescence monitoring of dipicolinic acid release. Appl. Environ. Microbiol. 2005, 71, 3556–3564. [Google Scholar] [CrossRef] [Green Version]
- Karava, M.; Bracharz, F. Quantification and isolation of Bacillus subtilis spores using cell sorting and automated gating. PLoS ONE 2019, 14, e0219892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.U.; Shahbaz, H.M. Inactivation of Bacillus cereus spores using a combined treatment of UV-TiO2 photocatalysis and high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2021, 70, 102–116. [Google Scholar] [CrossRef]
- Berberidou, C.; Paspaltsis, I. Heterogenous photocatalytic inactivation of B. stearothermophilus endospores in aqueous suspensions under artificial and solar irradiation. Appl. Catal. B Environ. 2012, 125, 375–382. [Google Scholar] [CrossRef]
- Prasad, G.; Ramacharyulu, P. Photocatalytic inactivation of spores of Bacillus anthracis using titania nanomaterials. J. Hazard. Mater. 2011, 185, 977–982. [Google Scholar] [CrossRef]
- Zacarías, S.M.; Vaccari, M.C. Effect of the radiation flux on the photocatalytic inactivation of spores of Bacillus subtilis. J. Photochem. Photobiol. A Chem. 2010, 214, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Cui, J. Bactericidal efficiency and photochemical mechanisms of micro/nano bubble–enhanced visible light photocatalytic water disinfection. Water Res. 2021, 203, 117–131. [Google Scholar] [CrossRef]
- Zacarías, S.M.; Manassero, A. Design and performance evaluation of a photocatalytic reactor for indoor air disinfection. Environ. Sci. Pollut. Res. 2021, 28, 23859–23867. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xie, H. Visible Light-Induced Marine Bacterial Inactivation in Seawater by an In Situ Photo-Fenton System without Additional Oxidants: Implications for Ballast Water Sterilization. ACS EST Water 2021, 1, 1483–1494. [Google Scholar] [CrossRef]
Phocatalyst | Bacterial Strains | Light Source | Bacterial Concentration (cfu/mL) | Inactivation Efficiency | Reference |
---|---|---|---|---|---|
TiO2 | B. cereus spores | UV/high pressure | 1 × 109 | 5.0 log-reduction in 1 h (~5 log/h) | [26] |
Ag/Pt/TiO2 | B. stearothermophilus spores | UV-Vis | 4 × 107 | 5.6 log-reduction in 1.5 h (~3.75 log/h) | [27] |
TiO2 | B. anthracis spores | UV | 1 × 104 | 4.0 log-reduction in 5 h (~0.8 log/h) | [28] |
TiO2 | B. subtilis spores | UV | 1 × 107 | 7.0 log-reduction in 24 h (~0.29 log/h) | [29] |
TiON/PdO | B. subtilis spores | / | 1 × 106 | 2.7 log-reduction in 3 h (~0.9 log/h) | [2] |
Ag/TiO2 | B. subtilis spores | Vis/micro/nano bubble | 1 × 105 | 4.0-reduction log in 1 h (~4 log/h) | [30] |
TiO2 | B. subtilis spores | UV | 1 × 108 | 6.7 log-reduction in 8 h (~0.84 log/h) | [31] |
NS/PS | B. subtilis spores | Vis | 1 × 107 | 7.0 log-reduction in 5 h (~1.4 log/h) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Z.; Liu, D.; Wang, W. Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation. Coatings 2022, 12, 528. https://doi.org/10.3390/coatings12040528
Liu Y, Liu Z, Liu D, Wang W. Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation. Coatings. 2022; 12(4):528. https://doi.org/10.3390/coatings12040528
Chicago/Turabian StyleLiu, Yan, Zhenni Liu, Dong Liu, and Wanjun Wang. 2022. "Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation" Coatings 12, no. 4: 528. https://doi.org/10.3390/coatings12040528
APA StyleLiu, Y., Liu, Z., Liu, D., & Wang, W. (2022). Photocatalytic Inactivation of Bacillus subtilis Spores by Natural Sphalerite with Persulfate under Visible Light Irradiation. Coatings, 12(4), 528. https://doi.org/10.3390/coatings12040528