Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of g-C3N4
2.3. Preparation of g-C3N4/Metal Tungstate Composite
2.4. Electrochemical Studies
3. Characterization Studies
3.1. Fourier-Transform Infrared (FTIR) Spectroscopy
3.2. X-ray Diffraction (XRD)
3.3. Estimation of Active Surface Area of Modified Electrode
4. Electrochemical Water Oxidation
Determination of Diffusion Coefficient (Do)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Salehi, Z.; Salavati-Niasari, M. Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod. 2019, 215, 480–487. [Google Scholar] [CrossRef]
- Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010, 36, 307–326. [Google Scholar] [CrossRef]
- Khan, S.B.; Kamal, T.; Asiri, A.M.; Bakhsh, E.M. Iron doped nanocomposites based efficient catalyst for hydrogen production and reduction of organic pollutant. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125502. [Google Scholar] [CrossRef]
- Walter, M.G.; Warren, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.; Lewis, N.S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Q.; Asiri, A.M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590. [Google Scholar] [CrossRef]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. [Google Scholar] [CrossRef]
- Ray, C.; Pal, T. Retracted article: Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J. Mater. Chem. A 2017, 5, 9465–9487. [Google Scholar] [CrossRef]
- Seo, C.U.; Yoon, Y.; Kim, D.H.; Choi, S.Y.; Park, W.K.; Yoo, J.S.; Baek, B.; Bin Kwon, S.; Yang, C.-M.; Song, Y.H.; et al. Fabrication of polyaniline–carbon nano composite for application in sensitive flexible acid sensor. J. Ind. Eng. Chem. 2018, 64, 97–101. [Google Scholar] [CrossRef]
- Muthusankar, E.; Ragupathy, D. Supercapacitive retention of electrochemically active phosphotungstic acid supported poly (diphenylamine)/MnO2 hybrid electrode. Mater. Lett. 2019, 241, 144–147. [Google Scholar] [CrossRef]
- Das, T.K.; Prusty, S. Review on conducting polymers and their applications. Polym. Technol. Eng. 2012, 51, 1487–1500. [Google Scholar] [CrossRef]
- Su, F.; Mathew, S.C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301. [Google Scholar] [CrossRef]
- Ramalingam, M.; Ponnusamy, V.K.; Sangilimuthu, S.N. A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Mikrochim. Acta 2019, 186, 69. [Google Scholar] [CrossRef]
- Eswaran, M.; Dhanusuraman, R.; Tsai, P.-C.; Ponnusamy, V.K. One-step preparation of graphitic carbon nitride/Polyaniline/Palladium nanoparticles based nanohybrid composite modified electrode for efficient methanol electro-oxidation. Fuel 2019, 251, 91–97. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Sher, M.; Iqbal, S.; Bahadur, A.; Li, D. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125863. [Google Scholar] [CrossRef]
- Dao, V.D.; Nguyen, T.D.; Van Noi, N.; Ngoc, N.M.; Pham, T.D.; Van Quan, P.; Trang, H.T. Superior visible light photocatalytic activity of g-C3N4/NiWO4 direct Z system for degradation of gaseous toluene. J. Solid State Chem. 2019, 272, 62–68. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A. Decoration of Fe3O4 and CoWO4 nanoparticles over graphitic carbon nitride: Novel visible-light-responsive photocatalysts with exceptional photocatalytic performances. Mater. Res. Bull. 2018, 105, 159–171. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Ahmed, S.A.; Khairou, K.S. Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: Effect of template and synthesis conditions. Appl. Catal. B Environ. 2014, 150, 63–73. [Google Scholar] [CrossRef]
- Shanker, G.S.; Panchal, R.A.; Ogale, S.; Nag, A. g-C3N4:Sn-doped In2O3 (ITO) nanocomposite for photoelectrochemical reduction of water using solar light. J. Solid State Chem. 2020, 285, 121187. [Google Scholar] [CrossRef]
- Kumar, A.; Chandel, M.; Thakur, M. Structural modifications of carbon nitride for photocatalytic applications. Photocatal. Adv. Mater. React. Eng. 2021, 100, 299–331. [Google Scholar]
- Jiang, Y.; Virkar, A.V. Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. J. Electrochem. Soc. 2003, 150, A942. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: A review. Mikrochim. Acta 2018, 185, 358. [Google Scholar] [CrossRef]
- Zhou, D.; Qiu, C. Study on the effect of Co doping concentration on optical properties of g-C3N4. Chem. Phys. Lett. 2019, 728, 70–73. [Google Scholar] [CrossRef]
- Vilian, A.; Oh, S.Y.; Rethinasabapathy, M.; Umapathi, R.; Hwang, S.-K.; Oh, C.W.; Park, B.; Huh, Y.S.; Han, Y.-K. Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. J. Hazard. Mater. 2020, 399, 122868. [Google Scholar] [CrossRef]
- Adib, K.; Rahimi-Nasrabadi, M.; Rezvani, Z.; Pourmortazavi, S.M.; Ahmadi, F.; Naderi, H.R.; Ganjali, M.R. Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J. Mater. Sci. Mater. Electron. 2016, 27, 4541–4550. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Rahimi-Nasrabadi, M.; Khalilian-Shalamzari, M.; Zahedi, M.M.; Hajimirsadeghi, S.S.; Omrani, I. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles. Appl. Surf. Sci. 2012, 263, 745–752. [Google Scholar] [CrossRef]
- Hossainian, H.; Salavati-Niasari, M.; Bazarganipour, M. Photodegradation of organic dye using strontium tungstate spherical-like nanostructures; synthesis and characterization. J. Mol. Liq. 2016, 220, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Ge, H.; Lin, X.; Guo, Y.; Yuan, R.; Fu, X.; Li, Z. Facile one-pot preparation of α-SnWO4/reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries. RSC Adv. 2013, 3, 1235–1242. [Google Scholar] [CrossRef]
- Saranya, S.; Senthilkumar, S.T.; Sankar, K.V.; Selvan, R.K. Synthesis of MnWO4 nanorods and its electrical and electrochemical properties. J. Electroceram. 2012, 28, 220–225. [Google Scholar] [CrossRef]
- Zhou, M.; Hou, Z.; Zhang, L.; Liu, Y.; Gao, Q.; Chen, X. n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustain. Energy Fuels 2017, 1, 317–323. [Google Scholar] [CrossRef]
- Viet, H.P.; Ngoc, A.D.T.; Minh, V.N.; Viet, H.T.T.; Do Van, D.; Thu, T.H.; Minh, P.N. Synthesis and characterization of Z-scheme heterostructure CoWO4/g-C3N4 as a visible-light photocatalyst for removal of organic pollutant. Vietnam. J. Catal. Adsorpt. 2021, 10, 59–63. [Google Scholar] [CrossRef]
- Singh, B.P.; Singh, J.; Singh, R.A. Luminescence properties of Eu3+ -activated SrWO4 nanophosphors-concentration and annealing effect. RSC Adv. 2014, 4, 32605–32621. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Adam, A.; Khan, A.; Siddiqui, M.; Yamani, Z.; Qamar, M. Synthesis of mesoporous NiWO4 nanocrystals for enhanced photoelectrochemical water oxidation. Mater. Lett. 2016, 177, 135–138. [Google Scholar] [CrossRef]
- Khan, M.; Janjua, N.K.; Khan, S.; Qazi, I.; Ali, S.; Saad Algarni, T. Electro-oxidation of ammonia at novel Ag2O− PrO2/γ-Al2O3 catalysts. Coatings 2021, 11, 257. [Google Scholar] [CrossRef]
- Smith, P.F.; Deibert, B.J.; Kaushik, S.; Gardner, G.; Hwang, S.; Wang, H.; Al-Sharab, J.F.; Garfunkel, E.; Fabris, L.; Li, J.; et al. Coordination geometry and oxidation state requirements of corner-sharing MnO6 octahedra for water oxidation catalysis: An investigation of manganite (γ-MnOOH). ACS Catal. 2016, 6, 2089–2099. [Google Scholar] [CrossRef]
- Khan, S.; Shah, S.S.; Anjum, M.A.R.; Khan, M.R.; Janjua, N.K. Electro-oxidation of ammonia over copper oxide impregnated γ-Al2O3 nanocatalysts. Coatings 2021, 11, 313. [Google Scholar] [CrossRef]
- AlShehri, S.M.; Ahmed, J.; Ahamad, T.; Arunachalam, P.; Ahmad, T.; Khan, A. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR). RSC Adv. 2017, 7, 45615–45623. [Google Scholar] [CrossRef] [Green Version]
- Rani, B.J.; Ravi, G.; Ravichandran, S.; Ganesh, V.; Ameen, F.; Al-Sabri, A.; Yuvakkumar, R. Electrochemically active XWO4 (X = Co, Cu, Mn, Zn) nanostructure for water splitting applications. Appl. Nanosci. 2018, 8, 1241–1258. [Google Scholar] [CrossRef]
Samples | Davrg (XRD) (nm) |
---|---|
g-C3N4/SnWO4 | 9.0 |
g-C3N4/MnWO4 | 16.3 |
g-C3N4/CoWO4 | 52.6 |
g-C3N4/SrWO4 | 84.4 |
g-C3N4/NiWO4 | 30.3 |
Samples | Active Surface Area (cm−2) |
---|---|
g-C3N4/SnWO4 | 0.061 |
g-C3N4/MnWO4 | 0.050 |
g-C3N4/CoWO4 | 0.068 |
g-C3N4/SrWO4 | 0.081 |
g-C3N4/NiWO4 | 0.088 |
Samples | Eonset (V) | Ipa (mA) | α | Do/10−6 cm2s−1 |
---|---|---|---|---|
g-C3N4/SnWO4 | 1.08 (NHE =1.23) | 1.5 | 0.2 | 40.72 |
g-C3N4/MnWO4 | 0.999 (NHE = 1.19) | 0.45 | 0.3 | 14.09 |
g-C3N4/CoWO4 | 0.92 (NHE = 1.12) | 4.5 | 0.2 | 130.00 |
g-C3N4/SrWO4 | 0.86 (NHE = 1.06) | 5.3 | 0.2 | 132.06 |
g-C3N4/NiWO4 | 0.80 (NHE = 1.01) | 6.5 | 0.1 | 133.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashfaq, T.; Khan, M.; Arshad, I.; Ahmad, A.; Ali, S.; Aftab, K.; Al-Kahtani, A.A.; Mohamed Tighezza, A. Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting. Coatings 2022, 12, 548. https://doi.org/10.3390/coatings12050548
Ashfaq T, Khan M, Arshad I, Ahmad A, Ali S, Aftab K, Al-Kahtani AA, Mohamed Tighezza A. Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting. Coatings. 2022; 12(5):548. https://doi.org/10.3390/coatings12050548
Chicago/Turabian StyleAshfaq, Tayyaba, Mariam Khan, Ifzan Arshad, Awais Ahmad, Shafaqat Ali, Kiran Aftab, Abdullah A. Al-Kahtani, and Ammar Mohamed Tighezza. 2022. "Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting" Coatings 12, no. 5: 548. https://doi.org/10.3390/coatings12050548
APA StyleAshfaq, T., Khan, M., Arshad, I., Ahmad, A., Ali, S., Aftab, K., Al-Kahtani, A. A., & Mohamed Tighezza, A. (2022). Electro-Oxidation of Metal Oxide-Fabricated Graphitic Carbon Nitride for Hydrogen Production via Water Splitting. Coatings, 12(5), 548. https://doi.org/10.3390/coatings12050548