Study of Mask Electrochemical Machining for Ring Narrow Groove under the Action of Multiple Physical Fields
Abstract
:1. Introduction
2. Theoretical Analysis of Mask Electrochemical Machining
2.1. The Principle of Mask Electrolysis
2.2. Forming Law of Mask Electrochemical Machining
3. Methodology
3.1. Establishment of Geometric Model
3.2. Multi-Physical Field Coupling Analysis
4. Numerical Simulation Analysis
4.1. The Influence Law of Process Parameters at the Initial Moment
4.2. Simulation Analysis of Ring Groove Forming Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bai, Y.Y.; Lu, M.; Li, W.B. Overview and expectation of research on narrow—deep—groove machining technology. Manuf. Technol. Mach. Tool 2014, 3, 45–49. [Google Scholar]
- Oh, K.H.; Lee, M.K.; Jeong, S.H. Laser micromachining of high-aspect-ratio metallic grooves for application to microthermal devices. J. Micromechanics Microengineering 2006, 16, 1958. [Google Scholar] [CrossRef]
- Oh, K.H.; Lee, M.K.; Kwon, S.J.; Jeong, S.H. Fabrication of high-aspect-ratio microgrooves with laser-assisted wet etching for micro heat pipe. In Proceedings of the Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, San Jose, CA, USA, 21–26 May 2006; pp. 1–2. [Google Scholar]
- Han, L.; He, W.D. Digitization process technology of cooling grooves on nozzle of liquid-propellant rocket engine. J. Rocket. Propuls. 2014, 40, 58–61. [Google Scholar]
- Zhang, C.; Guo, J.; Zhang, C.; Chen, X.; Liu, J.; Zhang, Y. Research on flow field of electrochemical milling on deep-narrow groove with tube electrode. Electromach. Mould. 2020, 31, 31–34. [Google Scholar]
- Su, C.; Hou, M.M.; Zhu, L.D.; Wang, W.S. SPH-based numerical simulation for big deformation during metal cutting. J. Northeast. Univ. Nat. Sci. 2009, 30, 419–421. [Google Scholar]
- Bao, J.; Li, L.; He, N.; Huang, L. A brief review of micronmilling technology. Mech. Sci. Technol. Aerosp. Eng. 2009, 28, 1019–1022. [Google Scholar]
- Pan, M.Q.; Li, J.H.; Tang, Y. Development of high-aspect-ratio microchannel heat exchanger based on multi-tool milling process. J. Cent. South Univ. Technol. 2008, 15, 228–234. [Google Scholar] [CrossRef]
- Bang, Y.B.; Lee, K.M.; Oh, S. 5-axis micro milling machine for machining micro parts. Int. J. Adv. Manuf. Technol. 2005, 25, 888–894. [Google Scholar] [CrossRef]
- Shamoto, E.; Saito, A. A novel deep groove machining method utilizing variable-pitch end mill with feed-directional thin support. Precis. Eng. 2016, 43, 277–284. [Google Scholar] [CrossRef]
- Niknam, S.A.; Songmene, V. Analysis of friction and burr formation in slot milling. Cirp Conf. Manuf. Syst. 2014, 21, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Niknam, S.A.; Songmene, V. Factors governing burr formation during high-speed slot milling of wrought aluminum alloys. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 1165–1179. [Google Scholar] [CrossRef]
- Li, A.; Zhao, J.; Zhou, Y.; Chen, X.; Wang, D. Experimental investigation on chip morphologies in high-speed dry milling of titanium alloy Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2012, 62, 933–942. [Google Scholar] [CrossRef]
- Klocke, F.; Holsten, M.; Welling, D.; Klink, A.; Perez, R. Influence of threshold based process control on sinking EDM of a high aspect ratio geometry in a gamma titanium aluminide. Procedia Cirp 2015, 35, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Abbas, N.M.; Solomon, D.G.; Bahari, M.F. A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2007, 47, 1214–1228. [Google Scholar] [CrossRef]
- Sarkar, S.; Mitra, S.; Bhattacharyya, B. Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model. Int. J. Adv. Manuf. Technol. 2006, 27, 501–508. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Xu, J.W. The basic application study on electrochemical machining integral impeller with big-twisted blades. Int. Technol. Innov. Conf. 2006, 7, 587–593. [Google Scholar]
- Mahdavinejad, R.; Hatami, M. On the application of electrochemical machining for inner surface polishing of gun barrel chamber. J. Mater. Processing Technol. 2008, 202, 307–315. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, X.C.; Zhui, D. Electrochemical machining of multiple slots with low-frequency tool vibrations. Procedia Cirp 2016, 42, 799–803. [Google Scholar]
- Silva, A.K.M.D.; Altena, H.S.J.; Mcgeough, J.A. Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Ann.-Manuf. Technol. 2003, 52, 165–168. [Google Scholar] [CrossRef]
- Zhao, J.S.; Wang, F.; Xiao, X.; Li, L. Experiment research on electrochemical machining of meso scale arc-shaped multi-grooves. J. Mech. Eng. 2014, 50, 187–192. [Google Scholar] [CrossRef]
- Wu, L.F.; Li, X.S.; Wang, L. Experimental study on electrolytic machining of micro-pit array based on dry film mask. Mech. Eng. 2013, 11, 5–7. [Google Scholar]
- Wang, Y.N. Study on Electrochemical Wire Cutting System of Micro Ring Groove and Its Experiment; Guangdong University of Technology: Guangdong, China, 2016. [Google Scholar]
- Yuan, K.; Zhang, C.F.; Ai, H.H.; Cheng, P.Y. Study on micro-electrochemical milling technology of 304 stainless steel micro-ring groove. Intern. Combust. Engine Parts 2018, 44, 108–109. [Google Scholar]
- Lv, Y.M.; Zhao, J.S.; Fan, Y.T.; Liu, D.; Yang, Z. Cathodic structure design of electrochemical machining with large length-width ratio and deep narrow slot. Aeronaut. Manuf. Technol. 2018, 61, 46–53. [Google Scholar]
- Qu, N.S.; Chen, X.L.; Li, H.S.; Zhu, D. Fabrication of PDMS micro through-holes for electrochemical micromachining. Int. J. Adv. Manuf. Technol. 2014, 72, 487–494. [Google Scholar] [CrossRef]
- Song, M. Study on Electrochemical Machining of Micropits with Active Mask; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2010. [Google Scholar]
- Cai, W.W. Study on Electrochemical Machining of Micropits with Active Mask; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2015. [Google Scholar]
- Wang, F.; Zhao, J.S.; Lv, Y.M.; Yang, Z.; He, Y.; Tian, Z. Experimental research on improving accuracy of electrochemical machining of deep narrow grooves. Int. J. Adv. Manuf. Technol. 2018, 96, 3217–3225. [Google Scholar]
- Chen, S.G.; Yu, Z.Q.; Liu, J.W.; Guo,, Z.N. Simulation analysis and experimental study of hole in mask electrochemical machining. Mach. Des. Manuf. 2018, 15, 155–158. [Google Scholar]
- Li, X.L.; Liu, S.H.; Xiao, H.P. Multi-field coupling simulation analysis for machining process of turbine drill blade. Oil Field Equip. 2019, 48, 1–6. [Google Scholar]
- Wang, Y.; Fu, X.Q.; Wang, Q.Q.; Zhen, Z. Experimental study on electrochemical machining of pit array mask. Mech. Sci. Technol. Aerosp. Eng. 2018, 37, 896–902. [Google Scholar]
- Zhou, X.C.; Cao, C.Y. Simulation of electrochemical machining temperature field based on COMSOL. J. Qiqihar Univ. Sci. Ed. 2018, 34, 41–44. [Google Scholar]
- Liu, G.Q.; Liu, L.; He, C.K.; Han, X. Simulation and experimental study on the coupling of multiple physical fields in electrochemical machining. J. Mach. Des. 2018, 35, 29–35. [Google Scholar]
- Wang, D.Y.; Zhu, Z.W.; Wang, N.F. Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution. Electrochim. Acta 2015, 2, 301–307. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Huang, L.; Zhao, H.; Cao, Y.; Tian, W.; Wang, N. Study of Mask Electrochemical Machining for Ring Narrow Groove under the Action of Multiple Physical Fields. Coatings 2022, 12, 605. https://doi.org/10.3390/coatings12050605
Zhao R, Huang L, Zhao H, Cao Y, Tian W, Wang N. Study of Mask Electrochemical Machining for Ring Narrow Groove under the Action of Multiple Physical Fields. Coatings. 2022; 12(5):605. https://doi.org/10.3390/coatings12050605
Chicago/Turabian StyleZhao, Ruochen, Liang Huang, Haiyue Zhao, Yan Cao, Weijun Tian, and Ning Wang. 2022. "Study of Mask Electrochemical Machining for Ring Narrow Groove under the Action of Multiple Physical Fields" Coatings 12, no. 5: 605. https://doi.org/10.3390/coatings12050605
APA StyleZhao, R., Huang, L., Zhao, H., Cao, Y., Tian, W., & Wang, N. (2022). Study of Mask Electrochemical Machining for Ring Narrow Groove under the Action of Multiple Physical Fields. Coatings, 12(5), 605. https://doi.org/10.3390/coatings12050605