Preparation of High-Thickness n−-Ga2O3 Film by MOCVD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment
2.3. Characterization
3. Results
3.1. Crystal Structure Analysis
3.2. Raman Analysis
3.3. Surface Morphological Analysis
3.4. Elemental Composition Analysis
3.5. Electron Characteristics Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearton, S.J.; Yang, J.C.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Razeghi, M.; Park, J.H.; McClintock, R.; Pavlidis, D.; Teherani, F.H.; Rogers, D.J.; Magill, B.A.; Khodaparast, G.A.; Xu, Y.B.; Wu, J.S.; et al. A Review of the Growth, Doping & Applications of beta-Ga2O3 thin films. Proc. Spie 2018, 10533, 21–44. [Google Scholar] [CrossRef]
- Tang, X.; Li, K.H.; Zhao, Y.; Sui, Y.X.; Liang, H.L.; Liu, Z.; Liao, C.H.; Babatain, W.Y.; Lin, R.Y.; Wang, C.J.; et al. Quasi-epitaxial growth of β-Ga2O3-coated wide band gap semiconductor tape for flexible UV photodetectors. ACS Appl. Mater. Interfaces 2021, 14, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Higashiwaki, M.; Murakami, H.; Kumagai, Y.; Kuramata, A. Current status of Ga2O3 power devices. Jpn J. Appl. Phys. 2016, 55, 1202A1. [Google Scholar] [CrossRef]
- Konishi, K.; Goto, K.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017, 110, 103506. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Ohba, E.; Kobayashi, T.; Yanagisawa, J.; Miyagawa, C.; Nakamura, Y. Growth of beta-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 2016, 447, 36–41. [Google Scholar] [CrossRef]
- Maslov, V.N.; Krymov, V.M.; Blashenkov, M.N.; Golovatenko, A.A.; Nikolaev, V.I. beta-Ga2O3 crystal growing from its own melt. Tech. Phys. Lett. 2014, 40, 303–305. [Google Scholar] [CrossRef]
- Tomm, Y.; Reiche, P.; Klimm, D.; Fukuda, T. Czochralski grown Ga2O3 crystals. J. Cryst Growth 2000, 220, 510–514. [Google Scholar] [CrossRef]
- Xu, W.L.; Shi, J.C.; Li, Y.W.; Xiu, X.Q.; Ding, S.; Xie, Z.L.; Tao, T.; Chen, P.; Liu, B.; Zhang, R.; et al. Study of β-Ga2O3 films hetero-epitaxially grown on off-angled sapphire substrates by halide vapor phase epitaxy. Mater. Lett. 2021, 289, 129411. [Google Scholar] [CrossRef]
- Kidalov, V.V.; Dyadenchuk, A.F.; Kladko, V.P.; Gudymenko, O.I.; Derhachov, M.P.; Popov, S.O.; Sushko, O.O.; Kidalov, V.V. Structure and electrical properties of β-Ga2O3 films obtained by radio frequency magnetron sputtering on porous silicon. ECS J. Solid State Sc. 2022, 11, 025004. [Google Scholar] [CrossRef]
- Jiao, T.; Li, Z.M.; Chen, W.; Dong, X.; Li, Z.D.; Diao, Z.T.; Zhang, Y.T.; Zhang, B.L. Stable electron concentration Si-doped β-Ga2O3 films homoepitaxial growth by MOCVD. Coatings 2021, 11, 589. [Google Scholar] [CrossRef]
- Li, Z.M.; Jiao, T.; Hu, D.Q.; Lv, Y.J.; Li, W.C.; Dong, X.; Zhang, Y.T.; Feng, Z.H.; Zhang, B.L. Study on β-Ga2O3 films grown with various VI/III ratios by MOCVD. Coatings 2019, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Nishinaka, H.; Nagaoka, T.; Kajita, Y.; Yoshimoto, M. Rapid homoepitaxial growth of (010) β-Ga2O3 thin films via mist chemical vapor deposition. Mater. Sci. Semicond. Process. 2021, 128, 105732. [Google Scholar] [CrossRef]
- Vogt, P.; Hensling, F.; Azizie, K.; Chang, C.S.; Schlom, D.G. Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy. APL Mater. 2021, 9, 031101. [Google Scholar] [CrossRef]
- Ghosh, S.; Baral, M.; Kamparath, R.; Choudhary, R.J.; Phase, D.M.; Singh, S.D.; Ganguli, T. Epitaxial growth and interface band alignment studies of all oxide alpha-Cr2O3/beta-Ga2O3 p-n heterojunction. Appl. Phys. Lett. 2019, 115, 061602. [Google Scholar] [CrossRef]
- Kan, S.; Takemoto, S.; Kaneko, K.; Takahashi, I.; Sugimoto, M.; Shinohe, T.; Fujita, S. Electrical properties of alpha-Ir2O3/alpha-Ga2O3 pn heterojunction diode and band alignment of the heterostructure. Appl. Phys. Lett. 2018, 113, 212104. [Google Scholar] [CrossRef]
- Watahiki, T.; Yuda, Y.; Furukawa, A.; Yamamuka, M.; Takiguchi, Y.; Miyajima, S. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage. Appl. Phys. Lett. 2017, 111, 222104. [Google Scholar] [CrossRef]
- Ji, M.; Taylor, N.R.; Kravchenko, I.; Joshi, P.; Aytug, T.; Cao, L.R.; Paranthaman, M.P. Demonstration of Large-Size Vertical Ga2O3 Schottky Barrier Diodes. IEEE Trans. Power Electr. 2021, 36, 41–44. [Google Scholar] [CrossRef]
- Wang, Y.G.; Cai, S.J.; Liu, M.; Lv, Y.J.; Long, S.B.; Zhou, X.Y.; Song, X.B.; Liang, S.X.; Han, T.T.; Tan, X.; et al. High-Voltage ((2)over-bar01) beta-Ga2O3 Vertical Schottky Barrier Diode With Thermally-Oxidized Termination. IEEE Electr. Device L 2020, 41, 131–134. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Goto, K.; Nomura, K.; Thieu, Q.T.; Togashi, R.; Murakami, H.; Kumagai, Y.; Monemar, B.; Koukitu, A.; et al. Ga2O3 Schottky Barrier Diodes with n(-)-Ga2O3 Drift Layers Grown by HVPE. In Proceedings of the 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2015; pp. 29–30. [Google Scholar]
- Li, Z.M.; Jiao, T.; Yu, J.Q.; Hu, D.Q.; Lv, Y.J.; Li, W.C.; Dong, X.; Zhang, B.L.; Zhang, Y.T.; Feng, Z.H.; et al. Single crystalline beta-Ga2O3 homoepitaxial films grown by MOCVD. Vacuum 2020, 178, 109440. [Google Scholar] [CrossRef]
- Farzana, E.; Alema, F.; Ho, W.Y.; Mauze, A.; Itoh, T.; Osinsky, A.; Speck, J.S. Vertical beta-Ga2O3 field plate Schottky barrier diode from metal-organic chemical vapor deposition. Appl. Phys. Lett. 2021, 118, 162109. [Google Scholar] [CrossRef]
- Gay, P.; Hirsch, P.B.; Kelly, A. The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1953, 1, 315–319. [Google Scholar] [CrossRef]
- Leach, J.H.; Udwary, K.; Rumsey, J.; Dodson, G.; Splawn, H.; Evans, K.R. Halide vapor phase epitaxial growth of beta-Ga2O3 and alpha-Ga2O3 films. APL Mater. 2019, 7, 022504. [Google Scholar] [CrossRef] [Green Version]
- Rafique, S.; Karim, M.R.; Johnson, J.M.; Hwang, J.; Zhao, H.P. LPCVD homoepitaxy of Si doped beta-Ga2O3 thin films on (010) and (001) substrates. Appl. Phys. Lett. 2018, 112, 052104. [Google Scholar] [CrossRef] [Green Version]
- Dohy, D.; Lucaz Ea, U.G.; Revcolevschi, A. Raman spectra and valence force field of single-crystalline β Ga2O3. J. Solid State Chem. 1982, 45, 180–192. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhu, B.F.; Huang, F.M.; Yan, Y.; Shang, E.Y.; Fan, S.S.; Han, W.G. Effect of defects on optical phonon Raman spectra in SiC nanorods. Solid State Commun. 1999, 111, 647–651. [Google Scholar] [CrossRef]
- Tellekamp, M.B.; Heinselman, K.N.; Harvey, S.; Khan, I.S.; Zakutayev, A. Growth and characterization of homoepitaxial beta-Ga(2)O(3)layers. J. Phys. D-Appl. Phys. 2020, 53, 484002. [Google Scholar] [CrossRef]
- Rafique, S.; Han, L.; Tadjer, M.J.; Freitas, J.A.; Mahadik, N.A.; Zhao, H.P. Homoepitaxial growth of beta-Ga2O3 thin films by low pressure chemical vapor deposition. Appl. Phys. Lett. 2016, 108, 182105. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Compromising Science by Ignorant Instrument Calibration-Need to Revisit Half a Century of Published XPS Data. Angew. Chem. Int. Ed. 2020, 59, 5002–5006. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf. Sci. 2018, 451, 99–103. [Google Scholar] [CrossRef]
- Mi, W.; Du, X.J.; Luan, C.N.; Xiao, H.D.; Ma, J. Electrical and optical characterizations of beta-Ga2O3: Sn films deposited on MgO(110) substrate by MOCVD. Rsc Adv. 2014, 4, 30579–30583. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Yu, Y.H.; Pei, Z.L.; Bai, X.D.; Sun, C.; Huang, R.F.; Wen, L.S. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140. [Google Scholar] [CrossRef]
- Ma, Y.J.; Feng, B.Y.; Zhang, X.D.; Chen, T.W.; Tang, W.B.; Zhang, L.; He, T.; Zhou, X.; Wei, X.; Fu, H.Q.; et al. High-performance beta-Ga2O3 solar-blind ultraviolet photodetectors epitaxially grown on (110) TiO2 substrates by metalorganic chemical vapor deposition. Vacuum 2021, 191, 110402. [Google Scholar] [CrossRef]
- Goto, K.; Konishi, K.; Murakami, H.; Kumagai, Y.; Monemar, B.; Higashiwaki, M.; Kuramata, A.; Yamakoshi, S. Halide vapor phase epitaxy of Si doped beta-Ga2O3 and its electrical properties. Thin Solid Film 2018, 666, 182–184. [Google Scholar] [CrossRef]
- Baldini, M.; Albrecht, M.; Fiedler, A.; Irmscher, K.; Schewski, R.; Wagner, G. Si- and Sn-Doped Homoepitaxial beta-Ga2O3 Layers Grown by MOVPE on (010)-Oriented Substrates. ECS J. Solid State Sci. Technol. 2017, 6, Q3040–Q3044. [Google Scholar] [CrossRef]
- Huang, S.; Lopez, R.; Paul, S.; Neal, A.T.; Mou, S.; Houng, M.P.; Li, J.V. β-Ga2O3 defect study by steady-state capacitance spectroscopy. Jpn. J. Appl. Phys. 2018, 57, 091101. [Google Scholar] [CrossRef]
- Aida, H.; Nishiguchi, K.; Takeda, H.; Aota, N.; Sunakawa, K.; Yaguchi, Y. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys. 2008, 47, 8506. [Google Scholar] [CrossRef]
- Thieu, Q.T.; Wakimoto, D.; Koishikawa, Y.; Sasaki, K.; Goto, K.; Konishi, K.; Murakami, H.; Kuramata, A.; Kumagai, Y.; Yamakoshi, S. Preparation of 2-in.-diameter (001) β-Ga2O3 homoepitaxial wafers by halide vapor phase epitaxy. Jpn. J. Appl. Phys. 2017, 56, 110310. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Jiao, T.; Chen, W.; Li, Z.; Dong, X.; Li, Z.; Diao, Z.; Zhang, Y.; Zhang, B.; Du, G. Preparation of High-Thickness n−-Ga2O3 Film by MOCVD. Coatings 2022, 12, 645. https://doi.org/10.3390/coatings12050645
Zhao C, Jiao T, Chen W, Li Z, Dong X, Li Z, Diao Z, Zhang Y, Zhang B, Du G. Preparation of High-Thickness n−-Ga2O3 Film by MOCVD. Coatings. 2022; 12(5):645. https://doi.org/10.3390/coatings12050645
Chicago/Turabian StyleZhao, Chunlei, Teng Jiao, Wei Chen, Zeming Li, Xin Dong, Zhengda Li, Zhaoti Diao, Yuantao Zhang, Baolin Zhang, and Guotong Du. 2022. "Preparation of High-Thickness n−-Ga2O3 Film by MOCVD" Coatings 12, no. 5: 645. https://doi.org/10.3390/coatings12050645
APA StyleZhao, C., Jiao, T., Chen, W., Li, Z., Dong, X., Li, Z., Diao, Z., Zhang, Y., Zhang, B., & Du, G. (2022). Preparation of High-Thickness n−-Ga2O3 Film by MOCVD. Coatings, 12(5), 645. https://doi.org/10.3390/coatings12050645