Recent Advances in Energy Storage and Photoelectric Conversion Films
Funding
Conflicts of Interest
References
- Koohi-Fayegh, S.; Rosen, M. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Ma, L.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [Google Scholar] [CrossRef] [PubMed]
- Moram, M. Light-emitting diodes and their applications in energy-saving lighting. Proc. Inst. Civ. Eng. Energy 2011, 164, 17–24. [Google Scholar] [CrossRef]
- Na, D.; Lee, B.; Yoon, B.; Seo, I. A solid-state thin-film electrolyte, lithium silicon oxynitride, deposited by using rf sputtering for thin-film batteries. J. Korean Phys. Soc. 2020, 76, 855–859. [Google Scholar] [CrossRef]
- Chen, C.; Li, K.; Tang, J. Ten Years of Sb2Se3 Thin Film Solar Cells. Sol. RRL 2022, 2200094. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Hu, H.; Li, Y.; Shen, Z.; Li, F.; Liu, Y.; Liu, R.; Chen, J.; Dong, C.; et al. Strategies for high-performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InfoMat 2022, e12322. [Google Scholar] [CrossRef]
- Rawat, S.S.; Rana, A.; Kumar, A.; Swami, S.K.; Srivastava, R.; Suman, C.K. Magneto-electrical properties of nickel phthalocyanine thin film and its application in organic solar cells. Solar Energy 2022, 231, 623–629. [Google Scholar] [CrossRef]
- Xu, P.; Kang, J.; Choi, J.B.; Suhr, J.; Yu, J.; Li, F.; Byun, J.H.; Kim, B.S.; Chou, T.W. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano 2014, 8, 9437–9445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhu, F.; Wang, F.; Wang, J.; Dong, R.; Zhuang, X.; Schmidt, O.G.; Feng, X. Stimulus-responsive micro-supercapacitors with ultrahigh energy density and reversible electrochromic window. Adv. Mater. 2017, 29, 1604491. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J.M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Martinez, C.C.; Moo, J.G.S.; Khezri, B.; Song, P.; Fisher, A.C.; Sofer, Z.; Pumera, M. Self-propelled supercapacitors for on-demand circuit configuration based on WS2 Nanoparticles micromachines. Adv. Funct. Mater. 2016, 26, 6662–6667. [Google Scholar] [CrossRef]
- Turkoglu, F.; Koseoglu, H.; Ekmekcioglu, M.; Cantas, A.; Ozdemir, M.; Aygun, G.; Ozyuzer, L. Development of ZTO/Ag/ZTO transparent electrodes for thin film solar cells. J. Mater. Sci. Mater. Electron. 2022, 33, 10955–10964. [Google Scholar] [CrossRef]
- Lin, B.H.; Morkved, T.L.; Meron, M.; Huang, Z.Q.; Viccaro, P.J.; Jaeger, H.M.; Williams, S.M.; Schlossman, M.L. X-ray studies of polymer/gold nanocomposites. J. Appl. Phys. 1999, 85, 3180. [Google Scholar] [CrossRef]
- Zhang, X.G. Electrochemistry of Silicon and Its Oxide; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Leskelae, M.; Ritala, M. Atomic Layer Deposition Chemistry: Recent Developments and Future Challenges. Angew. Chem. Int. Ed. 2003, 42, 5548–5554. [Google Scholar] [CrossRef] [PubMed]
- Garrett, W.; Sherman, A.J.; Stiglich, J. Rhenium as a Hard Chrome Replacement for Gun Tubes Mater. Manuf. Process. 2006, 21, 618–620. [Google Scholar] [CrossRef]
- Bagmut, A.G.; Bagmut, I.A.; Murav’ev, T.K.; Slabokrug, D.V. Crystallization and natural aging of thin films produced by pulsed laser evaporation of rhenium. Funct. Mater. 2013, 20, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Urbańczyk, A.; Nötzel, R. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-towards plasmonic integration technology. Appl. Phys. 2012, 112, 124302. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J. Recent Advances in Energy Storage and Photoelectric Conversion Films. Coatings 2022, 12, 788. https://doi.org/10.3390/coatings12060788
Li J. Recent Advances in Energy Storage and Photoelectric Conversion Films. Coatings. 2022; 12(6):788. https://doi.org/10.3390/coatings12060788
Chicago/Turabian StyleLi, Jinkai. 2022. "Recent Advances in Energy Storage and Photoelectric Conversion Films" Coatings 12, no. 6: 788. https://doi.org/10.3390/coatings12060788
APA StyleLi, J. (2022). Recent Advances in Energy Storage and Photoelectric Conversion Films. Coatings, 12(6), 788. https://doi.org/10.3390/coatings12060788