Special Issue: Optical Properties of Crystals and Thin Films
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titov, S.A.; Machikhin, A.S.; Pozhar, V.E. Evaluation of Acoustic Waves in Acousto-Optical Devices by Ultrasonic Imaging. Materials 2022, 15, 1792. [Google Scholar] [CrossRef] [PubMed]
- Starobor, A.; Palashov, O. Thermal effects in the DKDP Pockels cells in the 215–300 K temperature range. Appl. Opt. 2016, 55, 7365. [Google Scholar] [CrossRef] [PubMed]
- Kalisky, Y. Cr4+-doped crystals: Their use as lasers and passive Q-switches. Prog. Quantum Electron. 2004, 28, 249–303. [Google Scholar] [CrossRef]
- Marty, G.; Combrié, S.; Raineri, F.; De Rossi, A. Photonic crystal optical parametric oscillator. Nat. Photon. 2020, 15, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, K.; Sugimoto, Y.; Ikeda, N.; Watanabe, Y.; Ozaki, N.; Takata, Y.; Kitagawa, Y.; Ohkouchi, S.; Nakamura, S.; Watanabe, A.; et al. 9-Photonic crystal all-optical switches. In Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2010; pp. 241–275. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, H.; Ye, Y.; Zhao, C.; Wen, S.; Fan, D. Low-pass Spatial Filtering Using Optically Thinner Left-handed Photonic Crystals. In Proceedings of the 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials, Hangzhou, China, 16–18 October 2006; pp. 488–491. [Google Scholar] [CrossRef]
- Uher, J.; Hoefer, W. Tunable microwave and millimeter-wave band-pass filters. IEEE Trans. Microw. Theory Tech. 1991, 39, 643–653. [Google Scholar] [CrossRef]
- McMillen, D.K.; Hudson, T.D.; Wagner, J.; Singleton, J. Holographic recording in specially doped lithium niobate crystals. Opt. Express 1998, 2, 491–502. [Google Scholar] [CrossRef]
- Cong, H.; Zhang, H.; Wang, J.; Yu, W.; Fan, J.; Cheng, X.; Sun, S.; Zhang, J.; Lu, Q.; Jiang, C.; et al. Structural and thermal properties of the monoclinic Lu2SiO5single crystal: Evaluation as a new laser matrix. J. Appl. Crystallogr. 2009, 42, 284–294. [Google Scholar] [CrossRef]
- Bazzan, M.; Sada, C. Optical waveguides in lithium niobate: Recent developments and applications. Appl. Phys. Rev. 2015, 2, 040603. [Google Scholar] [CrossRef]
- Holtmann, F.; Imbrock, J.; Bäumer, C.; Hesse, H.; Krätzig, E.; Kip, D. Photorefractive properties of undoped lithium tantalate crystals for various composition. J. Appl. Phys. 2004, 96, 7455–7459. [Google Scholar] [CrossRef] [Green Version]
- Suchocki, A.; Gilliland, G.D.; Quarles, G.J.; Petrovic, M.S.; Powell, R.C. Four- And Two-Wave Mixing in Solids. Acta Phys. Pol. A 1991, 80, 207–219. [Google Scholar] [CrossRef]
- He, G.S. Optical phase conjugation: Principles, techniques, and applications. Prog. Quantum Electron. 2002, 26, 131–191. [Google Scholar] [CrossRef]
- Zuo, X.; Shi, P.; Oliver, S.A.; Vittoria, C. Single crystal hexaferrite phase shifter at Ka band. J. Appl. Phys. 2002, 91, 7622. [Google Scholar] [CrossRef] [Green Version]
- Georges, M.P.; Lemaire, P.C. Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimi-zation of a transportable set-up for quantified phase measurements on large objects. Appl. Phys. B 1999, 68, 1073–1083. [Google Scholar] [CrossRef]
- Akselrod, M.S.; Akselrod, A.E.; Orlov, S.S.; Sanyal, S.; Underwood, T.H. New aluminum oxide single crystals for volumetric optical data storage. In Optical Data Storage; Optica Publishing Group: Washington, DC, USA, 2003; pp. 244–251. [Google Scholar] [CrossRef]
- Hodson, T.; Miao, B.; Chen, C.; Sharkawy, A.; Prather, D. Silicon Based Photonic Crystal Electro-optic Modulator Utilizing the Plasma Dispersion Effect. In Proceedings of the Conference on Lasers and Electro-Optics, Munich, Germany, 17–22 June 2007; pp. 1–2. [Google Scholar] [CrossRef]
- Duggan, L.; Hood, C.; Warren-Forward, H.; Haque, M.; Kron, T. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: Implications for clinical dosimetry. Phys. Med. Biol. 2004, 49, 3831. [Google Scholar] [CrossRef] [PubMed]
- Kocak, F.; Tapan, I. Simulation of LYSO Crystal for the TAC-PF Electromagnetic Calorimeter. Acta Phys. Pol. A 2017, 131, 527–530. [Google Scholar] [CrossRef]
- Guidi, V.; Malaga, C.; Martinelli, G.; Stenfancich, M.; Vincenzi, D.; Biryukov, V.; Chesnokov, Y.; Kotov, V. Highly efficient crystal deflector for channeling extraction of a proton beam from accelerators. In Proceedings of the 2003 Particle Accelerator Conference, Lucerne, Switzerland, 5–9 July 2004; Volume 3, pp. 1655–1657. [Google Scholar] [CrossRef] [Green Version]
- Karimian, A.R.; Thompson, C.J. Assessment of a new scintillation crystal (LaBr3) in PET scanners using Monte Carlo method. Nukleonika 2008, 53, 3–6. [Google Scholar]
- Zhao, H.; Dai, S.; Zhu, S.; Yin, H.; Li, Z.; Chen, Z. Multifunctional Optical Crystals for All-Solid-State Raman Lasers. Crystals 2021, 11, 114. [Google Scholar] [CrossRef]
- Canning, J.; Clark, C.; Dayao, M.; de LaMela, D.; Logozzo, M.; Zhao, J. Anti-Reflection Coatings on 3D-Printed Components. Coatings 2021, 11, 1519. [Google Scholar] [CrossRef]
- Price, J.J.; Xu, T.; Zhang, B.; Lin, L.; Koch, K.W.; Null, E.L.; Reiman, K.B.; Paulson, C.A.; Kim, C.-G.; Oh, S.-Y.; et al. Nanoindentation Hardness and Practical Scratch Resistance in Mechanically Tunable Anti-Reflection Coatings. Coatings 2021, 11, 213. [Google Scholar] [CrossRef]
- Hass, G.; Tousey, R. Reflecting Coatings for the Extreme Ultraviolet. J. Opt. Soc. Am. 1959, 49, 593–601. [Google Scholar] [CrossRef]
- Kaur, J.; Bethge, O.; Wibowo, R.A.; Bansal, N.; Bauch, M.; Hamid, R.; Bertagnolli, E.; Dimopoulos, T. All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Sol. Energy Mater. Sol. Cells 2017, 161, 449–459. [Google Scholar] [CrossRef]
- Fink, Y.; Winn, J.N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J.D.; Thomas, E.L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiken, D.J. High performance anti-reflection coatings for broadband multi-junction solar cells. Sol. Energy Mater. Sol. Cells 2000, 64, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Lequime, M. Tunable thin film filters: Review and perspectives. In Proceedings of the SPIE-Optical Systems Design, St. Etienne, France, 30 September 2003; Volume 5250, pp. 302–311. [Google Scholar]
- Beauchamp, W.T.; Tuttle-Hart, T. UV/IR Reflecting Solar Cell Cover. U.S. Patent 5,449,413, 9 December 1995. [Google Scholar]
- Williams, C.; Hong, N.; Julian, M.; Borg, S.; Kim, H.J. Tunable mid-wave infrared Fabry-Perot bandpass filters using phase-change GeSbTe. Opt. Express 2020, 28, 10583–10594. [Google Scholar] [CrossRef]
- Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214–1222. [Google Scholar] [CrossRef]
- Leupacher, W.; Penzkofer, A. Refractive-index measurement of absorbing condensed media. Appl. Optics 1984, 23, 1554–1558. [Google Scholar] [CrossRef] [Green Version]
- Nestler, P.; Helm, C.A. Determination of refractive index and layer thickness of nm-thin films via ellipsometry. Opt. Express 2017, 25, 27077–27085. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D. Evaluation of the Tauc Method for Optical Absorption Edge Determination: ZnO Thin Films as a Model System. Phys. Status Solidi 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. A Contribution to the Optics of Pigments. Z. Technol. Phys. 1931, 12, 593–599. [Google Scholar]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocata-lysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Stutzmann, M. The defect density in amorphous silicon. Philos. Mag. Part B 1989, 60, 531–546. [Google Scholar] [CrossRef]
- Sherman, S.; Wagner, S.; Gottscho, R.A. Correlation between the valence- and conduction-band-tail energies in hydrogenated amorphous silicon. Appl. Phys. Lett. 1996, 69, 3242–3244. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potera, P. Special Issue: Optical Properties of Crystals and Thin Films. Coatings 2022, 12, 920. https://doi.org/10.3390/coatings12070920
Potera P. Special Issue: Optical Properties of Crystals and Thin Films. Coatings. 2022; 12(7):920. https://doi.org/10.3390/coatings12070920
Chicago/Turabian StylePotera, Piotr. 2022. "Special Issue: Optical Properties of Crystals and Thin Films" Coatings 12, no. 7: 920. https://doi.org/10.3390/coatings12070920
APA StylePotera, P. (2022). Special Issue: Optical Properties of Crystals and Thin Films. Coatings, 12(7), 920. https://doi.org/10.3390/coatings12070920