Simulation of Mushroom Nanostructures with Ag Nanoparticles for Broadband and Wide-Angle Superabsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Simulation
2.3. Experiment
2.4. Characteristics
3. Results and Discussion
3.1. The Effect of Ag NPs on the Absorption of Si Metasurfaces
3.2. The Effect of Nanostructured Si Surface with Ag NPs on Wide-Angle Superabsorption
3.3. The Effect of Randomly Distributed Nanostructured Si Surface on Absorption
3.4. Superabsorption Analysis of Nanostructured Si Metasurfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dereshgi, S.A.; Okyay, A.K. Large area compatible broadband superabsorber surfaces in the VIS-NIR spectrum utilizing metal-insulator-metal stack and plasmonic nanoparticles. Opt. Express 2016, 24, 17644–17653. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-F.; Chang, S.-H.G.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H.; Yeh, C.-S. Au Nanorod design as light-absorber in the first and second biological near-infrared windows for in Vivo photothermal therapy. ACS Nano 2013, 7, 5330–5342. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, D.P.; Sadoughi, G.; Rehman, W.; Eperon, G.E.; Saliba, M.; Hörantner, M.T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.; Probst, J.; Back, F.; Wyss, P.; Eisenhauer, D.; Löchel, B.; Rudigier-Voigt, E.; Becker, C. Quasicrystalline-structured light harvesting nanophotonic silicon films on nanoimprinted glass for ultra-thin photovoltaics. Opt. Mater. Express 2014, 4, 2290–2299. [Google Scholar] [CrossRef]
- Guo, Q.; Ford, G.M.; Hillhouse, H.W.; Agrawal, R. Sulfide nanocrystal inks for dense Cu(In1-xGax)(S1-ySey)2 absorber films and their photovoltaic performance. Nano Lett. 2009, 9, 3060–3065. [Google Scholar] [CrossRef]
- Dereshgi, S.A.; Sisman, Z.; Topalli, K.; Okyay, A.K. Plasmonically enhanced metal-insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications. Sci. Rep. 2017, 7, 42349. [Google Scholar] [CrossRef]
- Song, S.; Ma, X.; Pu, M.; Li, X.; Guo, Y.; Gao, P.; Luo, X. Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber. Photonics-Res. 2018, 6, 492–497. [Google Scholar] [CrossRef]
- Fan, K.; Suen, J.Y.; Liu, X.; Padilla, W.J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 2017, 4, 601–604. [Google Scholar] [CrossRef]
- Tittl, A.; Michel, A.U.; Schferling, M.; Yin, X.; Gholipour, B.; Long, C.; Matthias, W.; Thomas, T.; Frank, N.; Harald, G. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 2015, 27, 4597–4603. [Google Scholar] [CrossRef]
- Spinelli, P.; Ferry, E.V.; Van De Groep, J.; Van Lare, M.; Verschuuren, A.M.; Schropp, R.E.; Atwater, A.H.; Polman, A. Plasmonic light trapping in thin-film Si solar cells. J. Opt. 2012, 14, 024002. [Google Scholar] [CrossRef]
- Tamandani, S.; Darvish, G.; Faez, R. Analytical calculation of energy levels of mono- and bilayer graphene quantum dots used as light absorber in solar cells. Appl. Phys. A 2016, 122, 37. [Google Scholar] [CrossRef]
- Tian, X.; Li, Z.-Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics-Res. 2016, 4, 146–152. [Google Scholar] [CrossRef]
- Baqir, M.; Choudhury, P.; Akhtar, M.N. ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes. Optik 2021, 237, 166769. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Huang, Y.-J.; Liu, W.-C.; Lin, Y.W. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber. Sci. Rep. 2017, 7, 39791. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, F.; Luo, H. Triple-band perfect light absorber based on hybrid metasurface for sensing application. Nanoscale Res. Lett. 2020, 15, 103. [Google Scholar] [CrossRef]
- Aalizadeh, M.; Tavakkol, M.R.; Khavasi, A.; Yilmaz, M.; Ozbay, E. Electromagnetic field tapering in the high-roughness substrates coated by a single layer of manganese: A lithography-free approach to ultra-broadband, wide-angle, UV to IR perfect absorption. arXiv 2018, arXiv:1812.01987. [Google Scholar]
- Wu, C.; Avitzour, Y.; Shvets, G. Ultra-thin wide-angle perfect absorber for infrared frequencies. Proc. SPIE 2008, 7029, 70290W. [Google Scholar] [CrossRef]
- Kishin, M.; Ryushi, F. Broadband light absorption of an al semishell-mim nanostrucure in the UV to near-infrared regions. Opt. Lett. 2018, 43, 2981–2984. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Liu, X.; Wang, Y.; Fu, G. Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater. 2018, 83, 118–123. [Google Scholar] [CrossRef]
- Barshilia, H.C.; Selvakumar, N.; Vignesh, G.; Rajam, K.; Biswas, A. Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings. Sol. Energy Mater. Sol. Cells 2009, 93, 315–323. [Google Scholar] [CrossRef]
- Kim, W.; Simpkins, B.S.; Guo, H.; Hendrickson, J.R.; Guo, J. Hyperuniform disordered metal-insulator-metal gap plasmon metasurface near perfect light absorber. Opt. Mater. Express 2021, 11, 4083. [Google Scholar] [CrossRef]
- Wu, S.; Gu, Y.; Ye, Y.; Ye, H.; Chen, L. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime. Opt. Express 2018, 26, 21479–21489. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Ashraf, A.; Xin, H.; Tong, X.; Sutter, P.; Eisaman, M.D.; Black, C.T. Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells. Nat. Commun. 2015, 6, 5963. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.X.; Chen, L.S. Ultra-broadband plasmonic absorber based on biomimetic compound eye structures. IEEE Photonics J. 2018, 10, 5700207. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Zhu, Y.-F.; Dong, X.-X.; Gao, B.-L.; Wang, Y.-Z.; Shen, S. Broadband bidirectional visible light absorber with wide angular tolerance. J. Mater. Chem. C 2015, 4, 391–397. [Google Scholar] [CrossRef]
- Wu, J.; Ouyang, M.; Zhao, Y.; Han, Y.; Fu, Y. Mushroom-structured silicon metasurface for broadband superabsorption from UV to NIR. Opt. Mater. 2021, 121, 111504. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ouyang, M.; Yang, B.; Fu, Y. Simulation of Mushroom Nanostructures with Ag Nanoparticles for Broadband and Wide-Angle Superabsorption. Coatings 2022, 12, 1208. https://doi.org/10.3390/coatings12081208
Wu J, Ouyang M, Yang B, Fu Y. Simulation of Mushroom Nanostructures with Ag Nanoparticles for Broadband and Wide-Angle Superabsorption. Coatings. 2022; 12(8):1208. https://doi.org/10.3390/coatings12081208
Chicago/Turabian StyleWu, Jinshuang, Mingzhao Ouyang, Bowei Yang, and Yuegang Fu. 2022. "Simulation of Mushroom Nanostructures with Ag Nanoparticles for Broadband and Wide-Angle Superabsorption" Coatings 12, no. 8: 1208. https://doi.org/10.3390/coatings12081208
APA StyleWu, J., Ouyang, M., Yang, B., & Fu, Y. (2022). Simulation of Mushroom Nanostructures with Ag Nanoparticles for Broadband and Wide-Angle Superabsorption. Coatings, 12(8), 1208. https://doi.org/10.3390/coatings12081208