Structural Modifications of Sodium Polyacrylate-Polyacrylamide to Enhance Its Water Absorption Rate
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparations
2.3. Water Absorption Capacity, Absorption Rate, and Retention Rate
2.4. SEM, FTIR, and TG Analyses
3. Results and Discussion
3.1. FTIR Analyses
3.2. SEM Analyses
3.3. TG Analyses
3.4. Absorption Capacities
3.5. AUL
3.6. Absorption Rates
3.7. CRC
3.8. Comparison of Results with the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
- Bao, J.; Chen, S.; Wu, B.; Ma, M.; Shi, Y.; Wang, X.; Table III. Swelling Kinetic Parameters of M1, M2, M3, M4, and M5; 10.1002/app.41298.
- Ghasri, M.; Bouhendi, H.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Karami, Z.; Omidian, H.; Table 3 Comparison of swelling properties of optimized samples in this work (microwave method) with some published works on thermal surface treatment.; 10.1007/s13726-019-00722-6.
- Kim, J.S.; Kim, D.H.; Lee, Y.S.; Table 4. The absorption properties of the surface-crosslinked SAP (SSAP) according to the composition of monomer; 10.3390/polym13040663.
- Meng, Y.; Ye, L.; Figure 7. Equilibrium swelling ratio as a function of SHC content for St-MP SAP in distilled water (a) and brine (b).; 10.1002/app.44855.
- Zhu, S.S.; Xiao, Z.; Zhou, X.D.; Zhao, S.S.; Ye, X.W.; Li, J.Y.; Fig. 5. The rate of different kinds of super absorbent resin absorbing deionized water; 10.3969/j.issn.1001-3539.2019.06.009.
- Moini, N.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Omidian, H.; Esmaeili, N.; Table 2. Effects of the epoxy silane (EPS) content and the surface treatment method on free absorbency in distilled water (QDW), free absorbency in saline (QS), saline absorbency under load (AUL) and storage modulus at frequency 1 rad/s (G0) of the swollen samples; 10.1002/pat.4006.
- Ghasri, M.; Jahandideh, A.; Kabiri, K.; Bouhendi Hossein Zohuriaan-Mehr, M.J.; Moini, N.; TABLE 2 Surface modification conditions, swelling data, and salt sensitivity factor (f) for surface-crosslinked P (SA-co-AA) with glycerol-lactic acid star-shaped oligomers. The samples were modified at 120 °C for 2 hours, amidosulforic acid used as catalyst (0.2 g); 10.1002/pat.4476.
Conflicts of Interest
References
- Liu, Z.; Miao, Y.; Wang, Z.; Yin, G. Synthesis and characterization of a novel super-absorbent based on chemically modified pulverized wheat straw and acrylic acid. Carbohydr. Polym. 2009, 77, 131–135. [Google Scholar] [CrossRef]
- Ma, X.; Wen, G. Development history and synthesis of super-absorbent polymers: A review. J. Polym. Res. 2020, 27, 136. [Google Scholar] [CrossRef]
- Kong, W.; Li, Q.; Li, X.; Su, Y.; Yue, Q.; Gao, B. A biodegradable biomass-based polymeric composite for slow release and water retention. J. Environ. Manag. 2019, 230, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Ai, F.; Yin, X.; Hu, R.; Ma, H.; Liu, W. Research into the super-absorbent polymers on agricultural water. Agric. Water Manag. 2021, 245, 106513. [Google Scholar] [CrossRef]
- Qi, Z.; Hu, X. Water absorbency of super absorbent polymer based on flexible polymeric network. Eur. Polym. J. 2022, 166, 111045. [Google Scholar] [CrossRef]
- Song, W.; Xin, J.; Zhang, J. One-pot synthesis of soy protein (SP)-poly (acrylic acid) (PAA) superabsorbent hydrogels via facile preparation of SP macromonomer. Ind. Crops Prod. 2017, 100, 117–125. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Seggiani, M.; Hosny, A.; Rashad, M.; Cinelli, P.; Saad-Allah, K.; El-Sharnouby, M.; Shendy, S.; Azaam, M. Superabsorbent composites based on rice husk for agricultural applications: Swelling behavior, biodegradability in soil and drought alleviation. J. Saudi Chem. Soc. 2021, 25, 101254. [Google Scholar] [CrossRef]
- Nasu, T.; Ozaki, Y.; Sato, H. Study of changes in water structure and interactions among water, CH2, and COO− groups during water absorption in acrylic acid-based super absorbent polymers using Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119305. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Zhang, C.; Zong, L. Preparation and swelling properties of hydrolysis-resistant superabsorbent composite based on acrylic acid and sodium bentonite. Int. J. Polym. Anal Charact. 2020, 25, 300–314. [Google Scholar] [CrossRef]
- Buchholz, F.L.; Graham, A.T. Modern Superabsorbent Polymer Technology; John Wiley & Sons: New York, NY, USA, 1998; p. 279. [Google Scholar]
- Qi, X.; Liu, M.; Zhang, F.; Chen, Z. Synthesis and properties of poly (sodium acrylate-co-2-acryloylamino-2-methyl-1-propanesulfonic acid)/attapulgite as a salt-resistant superabsorbent composite. Polym. Eng. Sci. 2009, 49, 182–188. [Google Scholar] [CrossRef]
- Ibrahim, S.M.; El Salmawi, K.M.; Zahran, A.H. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J. Appl. Polym. Sci. 2007, 104, 2003–2008. [Google Scholar] [CrossRef]
- Lee, K.M.; Min, J.H.; Oh, S.; Lee, H.; Koh, W. Preparation and characterization of superabsorbent polymers (SAPs) surface-crosslinked with polycations. React. Funct. Polym. 2020, 157, 104774. [Google Scholar] [CrossRef]
- Azizi, A.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Bouhendi, H.; Karami, Z. Transamidation: A feasible approach of surface modification to improve absorbency under load of agricultural superabsorbent materials. J. Mater. Sci. 2018, 33, 2327–2335. [Google Scholar] [CrossRef]
- Chang, S.; Kim, M.; Oh, S.; Min, J.; Kang, D.; Han, C.; Ahn, T.; Koh, W.Q.; Lee, H. Multi-scale characterization of surface-crosslinked superabsorbent polymer hydrogel spheres. Polymer 2018, 145, 174–183. [Google Scholar] [CrossRef]
- Kwon, Y.R.; Kim, J.S.; Kim, D.H. Effective Enhancement of Water Absorbency of Itaconic Acid Based-Superabsorbent Polymer via Tunable Surface-Crosslinking. Polymers 2021, 13, 2782. [Google Scholar] [CrossRef]
- Omidian, H.; Rocca, J.G.; Park, K. Advances in superporous hydrogels. J. Control Release 2005, 102, 3–12. [Google Scholar] [CrossRef]
- Gotoh, T.; Nakatani, Y.; Sakohara, S. Novel synthesis of thermosensitive porous hydrogels. J. Appl. Polym. Sci. 1998, 69, 895–906. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H. Fast-swelling superabsorbent polymers with polymerizable macromolecular surfactant as crosslinker. J. Appl. Polym. Sci. 2016, 133, 44173. [Google Scholar] [CrossRef]
- Kabiri, K.; Omidian, H.; Zohuriaan-Mehr, M.J. Novel approach to highly porous superabsorbent hydrogels: Synergistic effect of porogens on porosity and swelling rate. Polym. Int. 2003, 52, 1158–1164. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, F.; Liu, M.; Qi, H. Preparation and properties of porous poly (sodium acrylate-co-acrylamide) salt-resistant superabsorbent composite. Polym. Eng. Sci. 2011, 51, 2453–2464. [Google Scholar] [CrossRef]
- Bao, J.; Chen, S.; Wu, B.; Ma, M.; Shi, Y.; Wang, X. A novel foaming approach to prepare porous superabsorbent poly (sodium acrylic acid) resins. J. Appl. Polym. Sci. 2015, 132, 41298. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, B.; Ma, M.; Wu, B.; Shi, Y.; Wang, X. Multiporous microstructure for enhancing the water absorption and swelling rate in poly (sodium acrylic acid) superabsorbent hydrogels based on a novel physical and chemical composite foaming system. J. Appl. Polym. Sci. 2016, 133, 44149. [Google Scholar] [CrossRef]
- Qing, L.S.; Adnan, N.; Ghazali, S.; Noordin, N. Effect of gas foaming and porosigen techniques on the properties of superporous hydrogels. Mater. Today Proc. 2018, 5, 21841–21848. [Google Scholar] [CrossRef]
- Barajas-Ledesma, R.M.; Patti, A.F.; Wong, V.N.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose superabsorbent structure by controlling the drying rate. Colloid Surf. A 2020, 600, 124943. [Google Scholar] [CrossRef]
- Cao, L.; Yang, H.; Zhou, Y.; Zhao, F.; Xu, P.; Yao, Q.; Yu, N.; Hu, Z.; Peng, Z. A new process for preparation of porous polyacrylamide resins and their humidity control properties. Energy Build 2013, 62, 590–596. [Google Scholar] [CrossRef]
- Chen, W.; Wang, T.; Dou, Z.; Xing, X. Self-Driven “Microfiltration” Enabled by Porous Superabsorbent Polymer (PSAP) Beads for Biofluid Specimen Processing and Storage. ACS Mater. Lett. 2020, 2, 1545–1554. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; He, X.; Li, Z.; Cao, X.; Xin, X.; Somasundaran, P. Structure–behavior–property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches. J. Phys. Chem. B 2012, 116, 160–167. [Google Scholar] [CrossRef]
- Geng, B.; Shen, Z.; Li, M.; Ji, X. Preparation and Characterization of Poly (acrylic-acrylamide) Absorbent Resin. Technol. Dev. Chem. Ind. 2017, 46, 17–18. [Google Scholar]
- Zhang, X.L.; Shen, H.F.; Chen, H.Q. Effects of Surface Crosslinking on the Properties of Super Absorbent Polymer. Fine Chem. 2013, 30, 1274–1278. [Google Scholar]
- Kuang, J.; Yuk, K.Y.; Huh, K.M. Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr. Polym. 2011, 83, 284–290. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Q.; Yue, Q.; Gao, B.; Xu, X.; Zhong, Q. Synthesis and characterization of a novel super-absorbent based on wheat straw. Bioresour. Technol. 2011, 102, 2853–2858. [Google Scholar] [CrossRef]
- Sennakesavan, G.; Mostakhdemin, M.; Dkhar, L.K.; Seyfoddin, A.; Fatihhi, S.J. Acrylic acid/acrylamide based hydrogels and its properties-A review. Polym. Degrad. Stab. 2020, 180, 109308. [Google Scholar] [CrossRef]
- Ghasri, M.; Bouhendi, H.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Karami, Z.; Omidian, H. Superabsorbent polymers achieved by surface cross linking of poly (sodium acrylate) using microwave method. Iran Polym. J. 2019, 28, 539–548. [Google Scholar] [CrossRef]
- Kabiri, K.; Zohuriaan-Mehr, M.J. Porous superabsorbent hydrogel composites: Synthesis, morphology and swelling rate. Macromol. Mater. Eng. 2004, 289, 653–661. [Google Scholar] [CrossRef]
- Li, Z.; Shen, J.; Ma, H.; Lu, X.; Shi, M.; Li, N.; Ye, M. Preparation and characterization of pH-and temperature-responsive nanocomposite double network hydrogels. Mater. Sci. Eng. C 2013, 33, 1951–1957. [Google Scholar] [CrossRef]
- Karadağ, E.; Saraydın, D.; Güven, O. Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromol. Mater. Eng. 2001, 286, 34–42. [Google Scholar] [CrossRef]
- Shi, X.N.; Wang, W.B.; Wang, A.Q. Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly (sodium acrylate-co-styrene)/attapulgite superabsorbent hydrogels. Colloids Surf. B 2011, 88, 279–286. [Google Scholar] [CrossRef]
- Sadeghi, M.; Heidari, B. Crosslinked graft copolymer of methacrylic acid and gelatin as a novel hydrogel with pH-responsiveness properties. Materials 2011, 4, 543–552. [Google Scholar] [CrossRef]
- Mojarad-Jabali, S.; Kabiri, K.; Karami, Z.; Mastropietro, D.J.; Omidian, H. Surface cross-linked SAPs with improved swollen gel strength using diol compounds. J. Macromol. Sci. A 2020, 57, 62–71. [Google Scholar] [CrossRef]
- Moini, N.; Kabiri, K.; Zohuriaan-Mehr, M.J. Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface. Polym. Plast. Technol. Eng. 2016, 55, 278–290. [Google Scholar] [CrossRef]
- Kim, J.S.; Kim, D.H.; Lee, Y.S. The influence of monomer composition and surface-crosslinking condition on biodegradation and gel strength of super absorbent polymer. Polymers 2021, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.M.; Liu, M.Z.; Chen, Z.B. Synthesis and Properties of Salt-resistant Superabsorbent Polymer Crosslinked by Alumina. Chin. J. Appl. Chem. 2004, 21, 388–391. [Google Scholar]
- Zhang, M.; Zhang, S.; Chen, Z.; Wang, M.; Cao, J.; Wang, R. Preparation and characterization of superabsorbent polymers based on sawdust. Polymers 2019, 11, 1891. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.B.; Xu, J.X.; Wang, A.Q. A pH-, salt-and solvent-responsive carboxymethylcellulose-g-poly (sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polym. Lett. 2011, 5, 385–400. [Google Scholar] [CrossRef]
- Amiri, F.; Kabiri, K.; Bouhendi, H.; Abdollahi, H.; Karami, Z. High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique. Polym. Bull. 2019, 76, 4047–4068. [Google Scholar] [CrossRef]
- Rosa, F.; Bordado, J.; Casquilho, M. Hydrosoluble copolymers of acrylamide-(2-acrylamido-2-methylpropanesulfonic acid). Synthesis and characterization by spectroscopy and viscometry. J. Appl. Polym. Sci. 2003, 87, 192–198. [Google Scholar] [CrossRef]
- He, M.; Yin, G.Q.; Wang, P. Progress of porous hydrogels. Chem. Ind. Eng. Prog. 2009, 28, 1578–1582. [Google Scholar]
- Zhang, W.; Liu, Q.; Guo, L.; Wang, P.; Liu, S.; Chen, J.; Lei, Z. White Cabbage (Brassica oleracea L.) waste, as biowaste for the preparation of novel superabsorbent polymer gel. J. Environ. Chem. Eng. 2021, 9, 106689. [Google Scholar] [CrossRef]
- Shahi, S.; Motasadizadeh, H.R.; Zohuriaan-Mehr, M.J. Surface modification of superabsorbing hydrogels through a feasible esterification reaction: Toward tunable superabsorbent for hygienic applications. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 544–557. [Google Scholar] [CrossRef]
- Meng, Y.; Ye, L. Synthesis and swelling property of the starch-based macroporous superabsorbent. J. Appl. Polym. Sci. 2017, 134, 44855. [Google Scholar] [CrossRef]
- Karami, Z.; Naderi, P.; Kabiri, K.; Zohuriaan-Mehr, M.J. Epoxidized and cyclocarbonated star-shaped macromolecules as bio-based internal and external crosslinkers for superabsorbent polymer hydrogels. J. Polym. Environ. 2020, 28, 1684–1695. [Google Scholar] [CrossRef]
- Schott, H. Swelling kinetics of polymers. J. Macromol. Sci. B 1992, 31, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Wang, A. Synthesis, characterization, and swelling behaviors of chitosan-g-poly (acrylic acid)/poly (vinyl alcohol) semi-IPN superabsorbent hydrogels. Polym. Adv. Technol. 2011, 22, 627–634. [Google Scholar] [CrossRef]
- Zhu, S.S.; Xiao, Z.; Zhou, X.D.; Zhao, S.S.; Ye, X.W.; Li, J.Y. Synthesis and Surface Modification of Porous Sodium Polyacrylate Superabsorbent Resin. Eng. Plast. Appl. 2019, 47, 48–54. [Google Scholar]
- Moini, N.; Kabiri, K.; Zohuriaan-Mehr, M.J.; Omidian, H.; Esmaeili, N. Fine tuning of SAP properties via epoxy-silane surface modification. Polym. Adv. Technol. 2017, 28, 1132–1147. [Google Scholar] [CrossRef]
- Ghasri, M.; Jahandideh, A.; Kabiri, K.; Bouhendi, H.; Zohuriaan-Mehr, M.J.; Moini, N. Glycerol-lactic acid star-shaped oligomers as efficient biobased surface modifiers for improving superabsorbent polymer hydrogels. Polym. Adv. Technol. 2019, 30, 390–399. [Google Scholar] [CrossRef]
Sample | Kis c | ||
---|---|---|---|
SAP0 | 592 | 662 | 3.05 |
SAP1 | 998 | 1087 | 6.80 |
SAP2 | 1954 | 2326 | 6.50 |
SAP3 | 1734 | 1818 | 21.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Zhu, W.; Sun, J. Structural Modifications of Sodium Polyacrylate-Polyacrylamide to Enhance Its Water Absorption Rate. Coatings 2022, 12, 1234. https://doi.org/10.3390/coatings12091234
Xu T, Zhu W, Sun J. Structural Modifications of Sodium Polyacrylate-Polyacrylamide to Enhance Its Water Absorption Rate. Coatings. 2022; 12(9):1234. https://doi.org/10.3390/coatings12091234
Chicago/Turabian StyleXu, Ting, Wenxiang Zhu, and Jian Sun. 2022. "Structural Modifications of Sodium Polyacrylate-Polyacrylamide to Enhance Its Water Absorption Rate" Coatings 12, no. 9: 1234. https://doi.org/10.3390/coatings12091234
APA StyleXu, T., Zhu, W., & Sun, J. (2022). Structural Modifications of Sodium Polyacrylate-Polyacrylamide to Enhance Its Water Absorption Rate. Coatings, 12(9), 1234. https://doi.org/10.3390/coatings12091234