Investigation on Influencing Mechanism of Processing Parameters on Corrosion Resistance and Zinc Content of Anodic Coatings Developed on Magnesium Alloys in Near-Neutral Solutions
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Coating Preparation
2.2. Microstructural Characterization
2.3. Electrochemical Test
3. Results
3.1. Coating Surface Characteristics
3.1.1. Surface Morphology and Composition
3.1.2. Cross-Sectional Morphology
3.1.3. XRD Analysis
3.1.4. XPS Analysis
3.1.5. Coating Corrosion Resistance
3.2. The Orthogonal Results
3.3. Influence of Treatment Time on Coating Property
4. Discussion
4.1. Formation Mechanism of Zn-Containing Coatings
4.2. Effects of Coating Characteristics on Corrosion Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, G.; Supriyono, T.; van der Heide, E. In Silico Contact Pressure of Metal-on-Metal Total HipImplant with Different Materials Subjected to Gait Loading. Metals 2022, 12, 1241. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Wu, S.; Yeung, K.W.K.; Zheng, Y.; Chu, P.K. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater. 2016, 45, 2–30. [Google Scholar] [CrossRef] [PubMed]
- Brooks, E.; Ehrensberger, M. Bio-corrosion of magnesium alloys for orthopaedic applications. J. Funct. Biomater. 2017, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Hotta, M. Corrosion products of field-exposed Mg-Al series magnesium alloys. Corros. Sci. 2016, 112, 276–288. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Li, Y.; Zhao, J.; Qin, L.; Lai, Y. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: A review. Regen. Biomater. 2017, 4, 129–137. [Google Scholar] [CrossRef]
- Li, X.J.; Zhang, M.; Wen, S.; Mao, X.; Huo, W.G.; Guo, Y.Y.; Wang, Y.X. Microstructure and wear resistance of micro-arc oxidation ceramic coatings prepared on 2A50 aluminum alloys. Surf. Coat. Technol. 2020, 394, 125853. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Feng, T.; Cheng, Y.L. A systematic study of the role of cathodic polarization and new findings on the soft sparking phenomenon from plasma electrolytic oxidation of an Al-Cu-Li alloy. J. Electrochem. Soc. 2022, 163, 071505. [Google Scholar] [CrossRef]
- Yao, Z.P.; Li, L.L.; Jiang, Z.H. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation. Appl. Surf. Sci. 2009, 255, 6724–6728. [Google Scholar] [CrossRef]
- Dou, J.; Gu, G.; Chen, C.; Pan, Y. Characterization and biodegradation behavior of micro-arc oxidation coatings formed on Mg-Zn-Ca alloys in two different electrolytes. RSC Adv. 2016, 6, 1488–14818. [Google Scholar] [CrossRef]
- Wen, C.; Zhan, X.; Huang, X.; Xu, F.; Luo, L.; Xia, C. Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method. Surf. Coat. Technol. 2017, 317, 125–133. [Google Scholar] [CrossRef]
- Zhang, R.F.; Shan, D.Y.; Chen, R.S.; Han, E.H. Effects of electric parameters on properties of anodic coatings formed on magnesium alloys. Mater. Chem. Phys. 2008, 107, 356–363. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Yu, Q.; Qi, Y.; Peng, Z.; Liang, J. Dual self-healing composite coating on magnesium alloys for corrosion protection. Chem. Eng. J. 2021, 424, 130551. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhang, D.J.; Su, H.J.; Yu, P.; Wan, Y.; Sun, H.L. Improving the tribocorrosion performance of plasma electrolytic oxidized coatings on AZ31B magnesium alloy using pullulan as an electrolyte additive. Surf. Coat. Technol. 2022, 446, 128754. [Google Scholar] [CrossRef]
- Zhao, Q.M.; Li, G.Z.; Zhu, H.M. Preparation and performance characterization of bioactive coating on magnesium alloy. J. Biobased Mater. Bio. 2017, 11, 473–476. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Zhang, S.F.; Zhao, R.F.; Lou, J.; Zhang, R.F.; Huan, X.X.; Zhang, Y.J. Influences of Na2SiO3 and EDTA-ZnNa2 concentration on properties of zinc-containing coatings on WE43 magnesium alloys. Surf. Coat. Technol. 2018, 356, 108–122. [Google Scholar] [CrossRef]
- dos Santos, A.P.; Muhaffel, F.; Paksoy, A.H.; Cimenoglu, H. Production of a coating containing Ca, P and Zn on AZ31 magnesium alloy by micro arc oxidation. In Proceedings of the International Scientific Conference, Gabrovo, Bulgaria, 18–19 November 2016. [Google Scholar]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Leonard, S.W.; Traber, M.G.; Ho, E. Zinc Deficiency Affects DNA Damage, Oxidative Stress, Antioxidant Defenses, and DNA Repair in Rats. J. Nutr. 2009, 139, 1626–1631. [Google Scholar] [CrossRef]
- Tapiero, H.; Tew, K.D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003, 57, 399–411. [Google Scholar] [CrossRef]
- Lonergan, Z.R.; Nairn, B.L.; Wang, J.; Hsu, Y.; Hesse, L.E.; Beavers, W.N.; Chazin, W.J.; Trinidad, J.C.; van Nieuwenhze, M.S.; Giedroc, D.P.; et al. An Acinetobacter baumannii, Zinc-Regulated Peptidase Maintains Cell Wall Integrity during Immune-Mediated Nutrient Sequestration. Cell Rep. 2019, 26, 2009–2018. [Google Scholar] [CrossRef]
- Mori, Y.; Koshi, A.; Liao, J.; Asoh, H.; Ono, S. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate—Silicate mixture electrolytes. Corros. Sci. 2014, 88, 254–262. [Google Scholar] [CrossRef]
- Shi, X.T.; Wang, Y.; Li, H.Y.; Zhang, S.F.; Zhao, R.F.; Li, G.Q.; Zhang, R.F.; Sheng, Y.; Cao, S.Y.; Zhao, Y.J.; et al. Corrosion resistance and biocompatibility of calcium-containing coatings developed in near-neutral solutions containing phytic acid and phosphoric acid on AZ31B alloy. J. Alloys Compd. 2020, 823, 153721. [Google Scholar] [CrossRef]
- Lin, Z.S.; Wang, T.L.; Yu, X.M.; Sun, X.T.; Yang, H.Z. Functionalization treatment of micro-arc oxidation coatings on magnesium alloys: A review. J. Alloys Compd. 2021, 879, 160453. [Google Scholar] [CrossRef]
- Xu, J.L.; Tao, S.C.; Ba, L.Z.; Luo, J.M.; Zheng, Y.F. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. Mater. Sci. Eng. 2019, 97, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Shi, H.W.; Liu, F.C.; Han, E.H. Self-healing epoxy coating based on tung oil-containing microcapsules for corrosion protection. Prog. Org. Coat. 2021, 158, 106236. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, S.F.; Xiang, J.H.; Zhang, L.H.; Zhang, Y.Q.; Guo, S.B. Influence of sodium silicate concentration on properties of micro arc oxidation coatings formed on AZ91HP magnesium alloys. Surf. Coat. Technol. 2012, 206, 5072–5076. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, R.L.; Xu, T.Y.; Xu, Y.; Ge, F.; Xi, Y.F.; Zhu, J.X.; He, H.P. Co-adsorption of phosphate and zinc (II) on the surface of ferrihydrite. Chemosphere 2016, 144, 1148–1155. [Google Scholar] [CrossRef]
- Jin, G.D.; Cao, H.L.; Qiao, Y.Q.; Meng, F.H.; Zhu, H.Q.; Liu, X.Y. Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surf. 2014, 117, 158–165. [Google Scholar] [CrossRef]
- Jia, Z.J.; Li, M.; Liu, Q.; Xu, X.C.; Cheng, Y.; Zheng, Y.F.; Xi, T.F.; Wei, S.C. Micro-arc oxidization of a novel Mg-1Ca alloy in three alkaline KF electrolytes: Corrosion resistance and cytotoxicity. Appl. Surf. Sci. 2014, 292, 1030–1039. [Google Scholar] [CrossRef]
- Cui, X.J.; Liu, C.H.; Yang, R.S.; Li, M.T.; Lin, X.Z. Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism. Surf. Coat. Technol. 2015, 269, 228–237. [Google Scholar] [CrossRef]
- Qiao, L.P.; Lou, J.; Zhang, S.F.; Qu, B.; Chang, W.H.; Zhang, R.F. The entrance mechanism of calcium and phosphorus elements into micro arc oxidation coatings developed on Ti6Al4V alloy. Surf. Coat. Technol. 2016, 285, 187–196. [Google Scholar] [CrossRef]
- Lee, K.M.; Shin, K.R.; Namgung, S.; Yoo, B.; Shin, D.H. Electrochemical response of ZrO2-incorproated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation. Surf. Coat. Technol. 2011, 205, 3779–3784. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Cai, S.; Xu, G.H.; Zhao, H.; Li, Y.; Wang, X.X.; Huang, K.; Ren, M.G.; Wu, X.D. Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance. Appl. Surf. Sci. 2014, 313, 896–904. [Google Scholar] [CrossRef]
- Liang, J.; Srinivasan, P.B.; Blawert, C.; Dietzel, W. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation. Corros. Sci. 2009, 51, 2483–2492. [Google Scholar] [CrossRef]
- Zhou, X.M.; Bai, H.L.; Ma, H.; Li, H.B.; Yuan, W.X.; Du, H.J.; Zhang, P.X.; Xin, H. Synthesis of zinc phosphate and zinc ammonium phosphate nanostructures with different morphologies through pH control. Mater. Charact. 2015, 108, 22–28. [Google Scholar] [CrossRef]
- Ma, H.J.; Gu, Y.H.; Liu, S.J.; Che, J.T.; Yang, D.W. Local corrosion behavior and model of micro-arc oxidation HA coating on AZ31 magnesium alloy. Surf. Coat. Technol. 2017, 331, 179–188. [Google Scholar] [CrossRef]
- Chen, J.F.; Lin, W.X.; Liang, S.Y.; Zou, L.Z.; Wang, C.; Wang, B.S.; Yan, M.F.; Cui, X.P. Effect of alloy cations on corrosion resistance of LDH/MAO coating on magnesium alloy. Appl. Surf. Sci. 2019, 463, 535–544. [Google Scholar] [CrossRef]
- Teaching and Research Group of Inorganic Chemistry at Northeastern University. University Chemistry (I); Northeast University Press: Shenyang, China, 1993; p. 402. (In Chinese) [Google Scholar]
Process No. | NH4HF2 (g/L) | H3PO4 (g/L) | IP6 (g/L) | EDTA-ZnNa2 (g/L) | icorr (×10−8 A·cm−2) | Zn Content (wt.%) |
---|---|---|---|---|---|---|
No. 1 | 3 | 15 | 4 | 6 | 11.20 | 2.03 |
No. 2 | 3 | 25 | 8 | 10 | 3.26 | 3.20 |
No. 3 | 3 | 35 | 12 | 14 | 7.01 | 4.12 |
No. 4 | 6 | 15 | 8 | 14 | 10.88 | 2.94 |
No. 5 | 6 | 25 | 12 | 6 | 8.56 | 1.44 |
No. 6 | 6 | 35 | 4 | 10 | 7.39 | 2.71 |
No. 7 | 9 | 15 | 12 | 10 | 1.09 | 1.48 |
No. 8 | 9 | 25 | 4 | 14 | 6.18 | 2.35 |
No. 9 | 9 | 35 | 8 | 6 | 8.06 | 1.42 |
K1 | 21.47 (9.35) | 23.17 (6.45) | 24.77 (7.09) | 27.82 (4.89) | - | - |
K2 | 26.83 (7.09) | 18.00 (6.99) | 22.20 (7.56) | 11.74 (7.39) | - | - |
K3 | 15.33 (5.25) | 22.46 (8.25) | 16.66 (7.04) | 24.07 (9.41) | - | - |
Difference | 11.50 (4.10) | 5.17 (1.80) | 8.11 (0.52) | 16.08 (4.52) | - | - |
Rank | 2 (2) | 4 (3) | 3 (4) | 1 (1) | - | - |
Process No. | βa (mV/dec) | βc (mV/dec) | icorr (A·cm−2) | Ecorr (V·vs·SCE) |
---|---|---|---|---|
Substrate | 65.43 | 237.7 | 2.11 × 10−5 | −1.64 |
No. 1 | 248.7 | 343.2 | 1.12 × 10−7 | −1.64 |
No. 2 | 159.6 | 451.1 | 3.26 × 10−8 | −1.56 |
No. 3 | 156.5 | 545.6 | 7.01 × 10−8 | −1.57 |
No. 4 | 196.5 | 464.5 | 1.09 × 10−7 | −1.56 |
No. 5 | 164.6 | 523.6 | 8.56 × 10−8 | −1.85 |
No. 6 | 160.0 | 619.9 | 7.39 × 10−8 | −1.85 |
No. 7 | 221.2 | 350.9 | 1.09 × 10−8 | −1.65 |
No. 8 | 220.8 | 544.8 | 6.18 × 10−8 | −1.73 |
No. 9 | 183.7 | 439.9 | 8.06 × 10−8 | −1.89 |
Electrolyte Constituents | Treatment Time (min) | Final Voltage (V) |
---|---|---|
No. 2 solution (3 g/L NH4HF2, 360 g/L HMTA, 25 g/L H3PO4, 8 g/L IP6 and 10 g/L EDTA-ZnNa2) | 2.5 | 484 |
3.0 | 496 | |
3.5 | 506 | |
4.0 | 514 |
Treatment Time (min) | βa (mV/dec) | βc (mV/dec) | icorr (A·cm−2) | Ecorr (V·vs·SCE) |
---|---|---|---|---|
2.5 | 188.8 | 671.7 | 1.65 × 10−8 | −1.58 |
3.0 | 159.6 | 451.1 | 3.26 × 10−8 | −1.56 |
3.5 | 114.2 | 830.1 | 3.49 × 10−8 | −1.48 |
4.0 | 120.6 | 619.6 | 5.18 × 10−8 | −1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhu, Y.; Zhao, R.; Zhang, S.; Lai, X.; Wang, Y.; Yan, Z.; Liu, W.; Zhang, R. Investigation on Influencing Mechanism of Processing Parameters on Corrosion Resistance and Zinc Content of Anodic Coatings Developed on Magnesium Alloys in Near-Neutral Solutions. Coatings 2022, 12, 1286. https://doi.org/10.3390/coatings12091286
Zhang W, Zhu Y, Zhao R, Zhang S, Lai X, Wang Y, Yan Z, Liu W, Zhang R. Investigation on Influencing Mechanism of Processing Parameters on Corrosion Resistance and Zinc Content of Anodic Coatings Developed on Magnesium Alloys in Near-Neutral Solutions. Coatings. 2022; 12(9):1286. https://doi.org/10.3390/coatings12091286
Chicago/Turabian StyleZhang, Wenxia, Yuanyuan Zhu, Rongfang Zhao, Shufang Zhang, Xinying Lai, Yibo Wang, Zekun Yan, Wenjing Liu, and Rongfa Zhang. 2022. "Investigation on Influencing Mechanism of Processing Parameters on Corrosion Resistance and Zinc Content of Anodic Coatings Developed on Magnesium Alloys in Near-Neutral Solutions" Coatings 12, no. 9: 1286. https://doi.org/10.3390/coatings12091286
APA StyleZhang, W., Zhu, Y., Zhao, R., Zhang, S., Lai, X., Wang, Y., Yan, Z., Liu, W., & Zhang, R. (2022). Investigation on Influencing Mechanism of Processing Parameters on Corrosion Resistance and Zinc Content of Anodic Coatings Developed on Magnesium Alloys in Near-Neutral Solutions. Coatings, 12(9), 1286. https://doi.org/10.3390/coatings12091286