Mechanical Stability of Self-Adhesive/Ion-Releasing Resin Composites
Abstract
:1. Introduction
- No difference would be observed in VHN for the ACT, VRF, XTE, and Fuji II (i) compared to every other material, and (ii) after 90 days in water storage compared to 1 day.
- No difference would be observed in KIC for the ACT, VRF, XTE, and Fuji II (i) compared to every other material, and (ii) after 90 days in water storage compared to 1 day.
2. Materials and Methods
2.1. Surface Hardness
2.2. Fracture Toughness
P = Load at Fracture | B = Thickness of the Specimen |
L = distance between the supports | Y = calibration function for a given geometry |
W = width of the specimen | a = notch length |
Y = [2.9 (a/w) 1/2 − 4.6 (a/w) 3/2 + 21.8 (a/w)5/2 − 37.6 (a/w)7/2 + 38.7 (a/w)9/2] |
2.3. Statistical Analysis
3. Results
Fracture Toughness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayne, S.C.; Ferracane, J.L.; Marshall, G.W.; Marshall, S.J.; van Noort, R. The Evolution of Dental Materials over the Past Century: Silver and Gold to Tooth Color and Beyond. J. Dent. Res. 2019, 98, 257–265. [Google Scholar] [CrossRef]
- Fisher, J.; Varenne, B.; Narvaez, D.; Vickers, C. The Minamata Convention and the phase down of dental amalgam. Bull. World Health Organ 2018, 96, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.H.; Lynch, C.D. The teaching of posterior resin composites: Planning for the future based on 25 years of research. J. Dent. 2014, 42, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Demarco, F.F.; Corrêa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J. Longevity of posterior composite restorations: Not only a matter of materials. Dent. Mater. 2012, 28, 87–101. [Google Scholar] [CrossRef]
- Rasines Alcaraz, M.G.; Veitz-Keenan, A.; Sahrmann, P.; Schmidlin, P.R.; Davis, D.; Iheozor-Ejiofor, Z. Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth. Cochrane Database Syst. Rev. 2014, 8, CD005620. [Google Scholar] [CrossRef] [Green Version]
- Eltahlah, D.; Lynch, C.D.; Chadwick, B.L.; Blum, I.R.; Wilson, N.H.F. An update on the reasons for placement and replacement of direct restorations. J. Dent. 2018, 72, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of Dental Composites Based on Methacrylate Resins-A Critical Review of the Causes and Method of Assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef]
- Feilzer, A.J.; de Gee, A.J.; Davidson, C.L. Relaxation of polymerization contraction shear stress by hygroscopic expansion. J. Dent. Res. 1990, 69, 36–39. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R.; Ferracane, J.L. Factors involved in mechanical fatigue degradation of dental resin composites. J. Dent. Res. 2013, 92, 584–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martos, J.; Osinaga, P.; Oliveira, E.; Castro, L. Hydrolytic degradation of composite resins: Effects on the microhardness. Mater. Res. 2003, 6, 599–604. [Google Scholar] [CrossRef]
- Vichi, A.; Margvelashvili, M.; Goracci, C.; Papacchini, F.; Ferrari, M. Bonding and sealing ability of a new self-adhering flowable composite resin in class I restorations. Clin. Oral. Investig. 2013, 17, 1497–1506. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef]
- Daabash, R.; Alshabib, A.; Alqahtani, M.Q.; Price, R.B.; Silikas, N.; Alshaafi, M.M. Ion releasing direct restorative materials: Key mechanical properties and wear. Dent. Mater. 2022, 38, 1866–1877. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Ilie, N.; Hickel, R.; Reis, A.; Loguercio, A.; Rousson, V. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials—A systematic review. Dent. Mater. 2017, 33, e101–e114. [Google Scholar] [CrossRef] [PubMed]
- Söderholm, K.-J.; Zigan, M.; Ragan, M.; Fischlschweiger, W.; Bergman, M. Hydrolytic degradation of dental composites. J. Dent. Res. 1984, 63, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- de Brito, O.; de Oliveira, I.; Monteiro, G. Hydrolytic and biological degradation of bulk-fill and self-adhering resin composites. Oper. Dent. 2019, 44, E223–E233. [Google Scholar] [CrossRef]
- Ferracane, J.L. Elution of leachable components from composites. J. Oral Rehabil. 1994, 21, 441–452. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Achilias, D.S. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J. Biomed. Mater. Res. 2005, 74, 617–626. [Google Scholar] [CrossRef]
- Archegas, L.R.P.; Rached, R.N.; Ignacio, S.A.; de Vasconcelos, E.C.; Ramos, D.T.; de Souza, E.M. Identification and Quantification of Monomers Released from Dental Composites Using HPLC. Braz. Arch. Biol. Technol. 2009, 52, 855–862. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin-based composite performance: Are there some things we can’t predict? Dent. Mater. 2013, 29, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-H.; Ong, J.L.; Okuno, O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J. Prosthet. Dent. 2002, 87, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Broitman, E. Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribol. Lett. 2017, 65, 23. [Google Scholar] [CrossRef] [Green Version]
- Soderholm, K.-J. Review of the fracture toughness approach. Dent. Mater. 2010, 26, 63–77. [Google Scholar] [CrossRef]
- Santerre, J.P.; Shajii, L.; Leung, B.W. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit. Rev. Oral. Biol. Med. 2001, 12, 136–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshabib, A.; Silikas, N.; Watts, D.C. Hardness and fracture toughness of resin-composite materials with and without fibers. Dent. Mater. 2019, 35, 1194–1203. [Google Scholar] [CrossRef]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin based composites. Clin. Oral. Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef]
- Ellakuria, J.; Triana, R.; Mínguez, N.; Soler, I.; Ibaseta, G.; Maza, J.; García-Godoy, F. Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements. Dent. Mater. 2003, 19, 286–290. [Google Scholar] [CrossRef]
- Aratani, M.; Pereira, A.C.; Correr-Sobrinho, L.; Sinhoreti, M.A.; Consani, S. Compressive strength of resin-modified glass ionomer restorative material: Effect of P/L ratio and storage time. J. Appl. Oral. Sci. 2005, 13, 356–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heintze, S.D.; Reichl, F.X.; Hickel, R. Wear of dental materials: Clinical significance and laboratory wear simulation methods—A review. Dent. Mater. J. 2019, 38, 343–353. [Google Scholar] [CrossRef]
- Gibbs, C.H.; Mahan, P.E.; Lundeen, H.C.; Brehnan, K.; Walsh, E.K.; Holbrook, W.B. Occlusal forces during chewing and swallowing as measured by sound transmission. J. Prosthet. Dent. 1981, 46, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Garcia, I.M.; Balhaddad, A.A.; Aljuboori, N.; Ibrahim, M.S.; Mokeem, L.; Ogubunka, A.; Collares, F.M.; de Melo, M.A.S. Wear Behavior and Surface Quality of Dental Bioactive Ions-Releasing Resins Under Simulated Chewing Conditions. Front. Oral. Health 2021, 2, 628026. [Google Scholar] [CrossRef] [PubMed]
- Roulet, J.F.; Gummadi, S.; Hussein, H.S.; Abdulhameed, N.; Shen, C. In vitro wear of dual-cured bulkfill composites and flowable bulkfill composites. J. Esthet. Restor. Dent. 2020, 32, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite--state of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Algamaiah, H.; Watts, D.C. Post-irradiation surface viscoelastic integrity of photo-polymerized resin-based composites. Dent. Mater. 2021, 37, 1828–1833. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Resin composites in dentistry: The monomer systems. Eur. J. Oral Sci. 1997, 105, 97–116. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; Yoshida, Y.; Van Meerbeek, B. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin. Dent. Mater. 2018, 34, 1072–1081. [Google Scholar] [CrossRef]
- Garoushi, S.; Vallittu, P.; Lassila, L. Hollow glass fibers in reinforcing glass ionomer cements. Dent. Mater. 2017, 33, e86–e93. [Google Scholar] [CrossRef]
- Lucksanasombool, P.; Higgs, W.; Higgs, R.; Swain, M. Toughness of glass fibres reinforced glass-ionomer cements. J. Mater. Sci. 2002, 37, 101–108. [Google Scholar] [CrossRef]
- Tanaka, C.B.; Ershad, F.; Ellakwa, A.; Kruzic, J.J. Fiber reinforcement of a resin modified glass ionomer cement. Dent. Mater. 2020, 36, 1516–1523. [Google Scholar] [CrossRef]
- Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867. [Google Scholar] [CrossRef] [PubMed]
Material | Manufacturer | Type and Shade | Filler Load | Filler Type | Resin Matrix | ||
---|---|---|---|---|---|---|---|
Code | Name | Vol% | Wt% | ||||
ACT | Activa | Pulpdent, Watertown, MA, USA | Resin-based ion-releasing material (paste-paste with tip)/A3 shade | N/A | 56% | Reactive ionomer glass fillers of bioactive glass and sodium fluoride | Patented ionic resin matrix, shock-absorbing rubberized resin (diurethane and other methacrylates with modified polyacrylic acid 44.6%) |
VRF | Vertise Flow | Kerr Dental, Brea, CA, USA | Self-adhering flowable Composite/A3 shade | N/A | 70% | Ytterbium fluoride, barium aluminosilicate glass, prepolymerized fillers, and colloidal silica | GPDM adhesive monomer, UDMA, BisGMA, and other methacrylate comonomers, photoinitiators |
XTE | Filtek Z250 Universal | 3M Oral Care, St Paul, MN, USA | Resin composite nanofilled (syringe)/ Body A2 | 60% | 78.5% | Zirconia and silica particles | BisGMA, UDMA, TEGDEMA, BisEMA |
Fuji II | Fuji II LC | GC, Tokyo, Japan | Polyacrylic acid, 2-HEMA, dimethacrylate | N/A | 58% | Al–Si-glass with a Powder/liquid ratio (g/g) = 3.3/1.0 | Polyacrylic acid, 2-HEMA, dimethacrylate |
Materials | Dry | Distilled Water | ||
---|---|---|---|---|
1 h | 1 d | 90 d | Change % | |
ACT | 38.2 (1.0) a,2 | 43.1 (1.2) b,2 | 28.8 (1.2) c,2 | 25% |
VRF | 40.1 (2.0) a,2 | 38.1 (1.1) a,3 | 30.7 (1.6) b,2 | 23% |
XTE | 58.3 (1.7) a,1 | 60.5 (2.2) a,1 | 55.6 (1.9) a,1 | 5% |
Fuji II | 48.8 (1.6) a,3 | 52.1 (2.2) a,4 | 40.5 (1.2) b,3 | 17% |
Fracture Toughness KIC (MPa·m0.5) | ||
---|---|---|
Material | 1 d | 90 d |
ACT | 1.11 (0.09) a | 0.85 (0.07) e |
VRF | 0.98 (0.08) b | 0.76 (0.07) e |
XTE | 1.32 (0.07) c | 1.14 (0.06) f |
Fuji II | 0.79 (0.05) d | 0.74 (0.07) d,e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshabib, A.; Alshehri, A.; Jurado, C.A.; Alrahlah, A.; Almazrou, A.; Albuhayri, M.; Alnujaym, A.; Almuhanna, A.; Fischer, N.G.; Algamaiah, H. Mechanical Stability of Self-Adhesive/Ion-Releasing Resin Composites. Coatings 2023, 13, 201. https://doi.org/10.3390/coatings13010201
Alshabib A, Alshehri A, Jurado CA, Alrahlah A, Almazrou A, Albuhayri M, Alnujaym A, Almuhanna A, Fischer NG, Algamaiah H. Mechanical Stability of Self-Adhesive/Ion-Releasing Resin Composites. Coatings. 2023; 13(1):201. https://doi.org/10.3390/coatings13010201
Chicago/Turabian StyleAlshabib, Abdulrahman, Abdullah Alshehri, Carlos A. Jurado, Ali Alrahlah, Abdulrahman Almazrou, Mansour Albuhayri, Abdullah Alnujaym, Abdullah Almuhanna, Nicholas G. Fischer, and Hamad Algamaiah. 2023. "Mechanical Stability of Self-Adhesive/Ion-Releasing Resin Composites" Coatings 13, no. 1: 201. https://doi.org/10.3390/coatings13010201
APA StyleAlshabib, A., Alshehri, A., Jurado, C. A., Alrahlah, A., Almazrou, A., Albuhayri, M., Alnujaym, A., Almuhanna, A., Fischer, N. G., & Algamaiah, H. (2023). Mechanical Stability of Self-Adhesive/Ion-Releasing Resin Composites. Coatings, 13(1), 201. https://doi.org/10.3390/coatings13010201