X-ray Detectors Based on Halide Perovskite Materials
Abstract
:1. Introduction
2. Halide Perovskite Film Fabrication Methods
2.1. Spin-Coating Process
2.2. Dissolution and Recrystallization Method
2.3. Spray Deposition Process
2.4. Aerosol–Liquid–Solid Method
2.5. Solution Growth Method
2.6. Scraper Method
2.7. Inkjet Printing Method
2.8. Laser Direct Writing
2.9. Melt and Crystallization
3. Halide Perovskite-Based X-ray Detector
3.1. 3D Perovskites-Based X-ray Detectors
3.1.1. Organic–Inorganic Hybrid Perovskites-Based X-ray Detectors
3.1.2. All-Inorganic Perovskites-Based X-ray Detectors
3.2. Low-Dimensional Perovskites-Based X-ray Detectors
3.2.1. Organic–Inorganic Hybrid Perovskites-Based X-ray Detectors
3.2.2. All-Inorganic Perovskites-Based X-ray Detectors
3.3. Three-Dimensional/Low-Dimensional Hybrid Perovskites-Based X-ray Detectors
Type | Material | Fabrication Method | Film Thickness (μm) | Sensor Area (mm2) | Sensitivity (µC Gyair−1 cm−2) | Minimum Detectable Dose Rate (µGyairs−1) | Ref. |
---|---|---|---|---|---|---|---|
3D perovskites-based X-ray detectors | MAPbBr3 | Solution-processed molecular bonding method | 150 | 0.044 | 21,000 | <0.1 (−1 V) | [53] |
Solution growth method | 2000 | - | 80 | 0.5 (−0.1 V) | [30] | ||
Cs2AgBiBr6 | Solution-processed method | 1180 | 3.14 | 105 (50 V) | 0.0597 (5 V) | [54] | |
CsPbBr3 | Laser direct writing | - | 10,000 | - | - | [43] | |
Dissolution and recrystallization method | 18 | 50 | 470 | 0.053 (2 V) | [26] | ||
Melt and crystallization | - | - | - | - | [44] | ||
CH3NH3PbI3 | Spin-coating process | 10–100 | - | - | - | [27] | |
CsPbI2Br | Aerosol–liquid–solid method | One micrometer- hundreds of micrometers | 10,000 | 148,000 | 0.28 (0.125 V μm−1) | [29] | |
MAPbI3 | Scraper method | 400 | 78,400 | 17,432 (500 V mm−1) | 0.067 (5 V mm−1) | [35] | |
Low-dimensional perovskites-based X-ray detectors | (NH4)3Bi2I9 | Solution growth method | 4900 (parallel); 1500 (perpendicular) | 6.75 (parallel); 22 (perpendicular) | 8200 (parallel); 803 (perpendicular) | 0.21 (parallel 1 V); 0.055 (perpendicular 10 V) | [56] |
CsPbBr3 | Inkjet printing method | 0.6 | 0.06 | 1450 | 17.2 (0.1 V) | [42] | |
3D/low-dimensional hybrid perovskites-based X-ray detectors | 2D (PEA)2MA3Pb4I13 /3D MAPbI3 | Spray deposition process | 0.5 | 9 | 19,500 | 0.48 (<25 V mm−1) | [57] |
4. Challenges and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasap, S.; Kabir, M.Z.; Rowlands, J. Recent advances in X-ray photoconductors for direct conversion X-ray image detectors. Curr. Appl. Phys. 2006, 6, 288–292. [Google Scholar] [CrossRef]
- Long, M.; Zhang, T.; Xu, W.; Zeng, X.; Xie, F.; Li, Q.; Chen, Z.; Zhou, F.; Wong, K.S.; Yan, K. Large-grain formamidinium PbI3–xBrx for high-performance perovskite solar cells via intermediate halide exchange. Adv. Energy Mater. 2017, 7, 1601882. [Google Scholar] [CrossRef]
- Su, Y.; Ma, W.; Yang, Y.M. Perovskite semiconductors for direct X-ray detection and imaging. J. Semicond. 2020, 41, 51204. [Google Scholar] [CrossRef]
- Mescher, H.; Schackmar, F.; Eggers, H.; Abzieher, T.; Zuber, M.; Hamann, E.; Baumbach, T.; Richards, B.S.; Hernandez-Sosa, G.; Paetzold, U.W. Flexible inkjet-printed triple cation perovskite X-ray detectors. ACS Appl. Mater. Interfaces 2020, 12, 15774–15784. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Yang, B.; Niu, G.; Xue, K.H.; Du, X.; Yin, L.; Zhang, M.; Wu, H.; Miao, X.S.; Tang, J. Hot-Pressed CsPbBr3 Quasi-Monocrystalline Film for Sensitive Direct X-ray Detection. Adv. Mater. 2019, 31, 1904405. [Google Scholar] [CrossRef]
- Basiricò, L.; Ciavatti, A.; Fraboni, B. Solution-Grown Organic and Perovskite X-Ray Detectors: A New Paradigm for the Direct Detection of Ionizing Radiation. Adv. Mater. Technol. 2021, 6, 2000475. [Google Scholar] [CrossRef]
- Sun, C.; Shen, X.; Zhang, Y.; Wang, Y.; Chen, X.; Ji, C.; Shen, H.; Shi, H.; Wang, Y.; William, W.Y. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes. Nanotechnology 2017, 28, 365601. [Google Scholar] [CrossRef]
- Wang, W.; Ma, Y.; Qi, L. High-performance photodetectors based on organometal halide perovskite nanonets. Adv. Funct. Mater. 2017, 27, 1603653. [Google Scholar] [CrossRef]
- Hu, H.; Niu, G.; Zheng, Z.; Xu, L.; Liu, L.; Tang, J. Perovskite semiconductors for ionizing radiation detection. EcoMat 2022, 4, e12258. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. A diamond-based dose-per-pulse x-ray detector for radiation therapy. Materials 2021, 14, 5203. [Google Scholar] [CrossRef]
- Pettinato, S.; Girolami, M.; Olivieri, R.; Stravato, A.; Caruso, C.; Salvatori, S. Time-resolved dosimetry of pulsed photon beams for radiotherapy based on diamond detector. IEEE Sens. J. 2022, 22, 12348–12356. [Google Scholar] [CrossRef]
- Talamonti, C.; Kanxheri, K.; Pallotta, S.; Servoli, L. Diamond Detectors for Radiotherapy X-Ray Small Beam Dosimetry. Front. Phys. 2021, 9, 632299. [Google Scholar] [CrossRef]
- Marinelli, M.; Felici, G.; Galante, F.; Gasparini, A.; Giuliano, L.; Heinrich, S.; Pacitti, M.; Prestopino, G.; Vanreusel, V.; Verellen, D. Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Med. Phys. 2022, 49, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bakr, Z.H.; Wali, Q.; Fakharuddin, A.; Schmidt-Mende, L.; Brown, T.M.; Jose, R. Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 2017, 34, 271–305. [Google Scholar] [CrossRef] [Green Version]
- Rao, H.-S.; Chen, B.-X.; Wang, X.-D.; Kuang, D.-B.; Su, C.-Y. A micron-scale laminar MAPbBr 3 single crystal for an efficient and stable perovskite solar cell. Chem. Commun. 2017, 53, 5163–5166. [Google Scholar] [CrossRef]
- Haruta, Y.; Kawakami, M.; Nakano, Y.; Kundu, S.; Wada, S.; Ikenoue, T.; Miyake, M.; Hirato, T.; Saidaminov, M.I. Scalable Fabrication of Metal Halide Perovskites for Direct X-ray Flat-Panel Detectors: A Perspective. Chem. Mater. 2022, 34, 5323–5333. [Google Scholar] [CrossRef]
- Büchele, P.; Richter, M.; Tedde, S.F.; Matt, G.J.; Ankah, G.N.; Fischer, R.; Biele, M.; Metzger, W.; Lilliu, S.; Bikondoa, O. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 2015, 9, 843–848. [Google Scholar] [CrossRef]
- Luo, Z.; G Moch, J.; S Johnson, S.; Chon Chen, C. A review on X-ray detection using nanomaterials. Curr. Nanosci. 2017, 13, 364–372. [Google Scholar] [CrossRef]
- Owens, A. Semiconductor materials and radiation detection. J. Synchrotron Radiat. 2006, 13, 143–150. [Google Scholar] [CrossRef]
- Bellazzini, R.; Spandre, G.; Brez, A.; Minuti, M.; Pinchera, M.; Mozzo, P. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J. Instrum. 2013, 8, C02028. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Xu, Y.; Yang, W.; Zhang, B.; Dong, J.; Jie, W.; Kanatzidis, M.G. Morphology of X-ray detector Cs 2 TeI 6 perovskite thick films grown by electrospray method. J. Mater. Chem. C 2019, 7, 8712–8719. [Google Scholar] [CrossRef]
- Wei, H.; Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabir, M.Z.; Kasap, S. Photoconductors for x-ray image detectors. In Springer Handbook of Electronic and Photonic Materials; Springer: Berlin/Heidelberg, Germany, 2017; p. 1. [Google Scholar]
- Matt, G.J.; Levchuk, I.; Knüttel, J.; Dallmann, J.; Osvet, A.; Sytnyk, M.; Tang, X.; Elia, J.; Hock, R.; Heiss, W. Sensitive Direct Converting X-Ray Detectors Utilizing Crystalline CsPbBr3 Perovskite Films Fabricated via Scalable Melt Processing. Adv. Mater. Interfaces 2020, 7, 1901575. [Google Scholar] [CrossRef] [Green Version]
- Gou, Z.; Huanglong, S.; Ke, W.; Sun, H.; Tian, H.; Gao, X.; Zhu, X.; Yang, D.; Wangyang, P. Self-Powered X-Ray Detector Based on All-Inorganic Perovskite Thick Film with High Sensitivity Under Low Dose Rate. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2019, 13, 1900094. [Google Scholar] [CrossRef]
- Yakunin, S.; Sytnyk, M.; Kriegner, D.; Shrestha, S.; Richter, M.; Matt, G.J.; Azimi, H.; Brabec, C.J.; Stangl, J.; Kovalenko, M.V. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 2015, 9, 444–449. [Google Scholar] [CrossRef]
- Amratisha, K.; Ponchai, J.; Kaewurai, P.; Pansa-Ngat, P.; Pinsuwan, K.; Kumnorkaew, P.; Ruankham, P.; Kanjanaboos, P. Layer-by-layer spray coating of a stacked perovskite absorber for perovskite solar cells with better performance and stability under a humid environment. Opt. Mater. Express 2020, 10, 1497–1508. [Google Scholar] [CrossRef]
- Qian, W.; Xu, X.; Wang, J.; Xu, Y.; Chen, J.; Ge, Y.; Chen, J.; Xiao, S.; Yang, S. An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors. Matter 2021, 4, 942–954. [Google Scholar] [CrossRef]
- Wei, H.; Fang, Y.; Mulligan, P.; Chuirazzi, W.; Fang, H.-H.; Wang, C.; Ecker, B.R.; Gao, Y.; Loi, M.A.; Cao, L. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Xu, Y.; Pan, Y.; Zhu, C.; Zhu, D.; Wu, Y.; Li, G.; Zhang, Q.; Li, Q. Solution-processed halide perovskite single crystals with intrinsic compositional gradients for X-ray detection. Chem. Mater. 2020, 32, 4973–4983. [Google Scholar] [CrossRef]
- Uhland, S.A.; Holman, R.K.; Morissette, S.; Cima, M.J.; Sachs, E.M. Strength of green ceramics with low binder content. J. Am. Ceram. Soc. 2001, 84, 2809–2818. [Google Scholar] [CrossRef]
- Baklouti, S.; Bouaziz, J.; Chartier, T.; Baumard, J.-F. Binder burnout and evolution of the mechanical strength of dry-pressed ceramics containing poly (vinyl alcohol). J. Eur. Ceram. Soc. 2001, 21, 1087–1092. [Google Scholar] [CrossRef]
- Kim, Y.C.; Kim, K.H.; Son, D.-Y.; Jeong, D.-N.; Seo, J.-Y.; Choi, Y.S.; Han, I.T.; Lee, S.Y.; Park, N.-G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Song, Z.; Wu, H.; Du, X.; He, X.; Pang, J.; Luo, H.; Jin, L.; Li, G.; Niu, G. Compact and Large-Area Perovskite Films Achieved via Soft-Pressing and Multi-Functional Polymerizable Binder for Flat-Panel X-Ray Imager. Adv. Funct. Mater. 2022, 32, 2110729. [Google Scholar] [CrossRef]
- Onses, M.S.; Sutanto, E.; Ferreira, P.M.; Alleyne, A.G.; Rogers, J.A. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 2015, 11, 4237–4266. [Google Scholar] [CrossRef]
- Chen, D.; Liang, J.; Pei, Q. Flexible and stretchable electrodes for next generation polymer electronics: A review. Sci. China Chem. 2016, 59, 659–671. [Google Scholar] [CrossRef]
- Park, H.-G.; Byun, S.-U.; Jeong, H.-C.; Lee, J.-W.; Seo, D.-S. Photoreactive spacer prepared using electrohydrodynamic printing for application in a liquid crystal device. ECS Solid State Lett. 2013, 2, R52. [Google Scholar] [CrossRef]
- Sutanto, E.; Shigeta, K.; Kim, Y.; Graf, P.; Hoelzle, D.; Barton, K.; Alleyne, A.; Ferreira, P.; Rogers, J.A. A multimaterial electrohydrodynamic jet (E-jet) printing system. J. Micromech. Microeng. 2012, 22, 045008. [Google Scholar] [CrossRef] [Green Version]
- de Gans, B.J.; Schubert, U.S. Inkjet printing of polymer micro-arrays and libraries: Instrumentation, requirements, and perspectives. Macromol. Rapid Commun. 2003, 24, 659–666. [Google Scholar] [CrossRef]
- Kim, K.; Kim, G.; Lee, B.R.; Ji, S.; Kim, S.-Y.; An, B.W.; Song, M.H.; Park, J.-U. High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes. Nanoscale 2015, 7, 13410–13415. [Google Scholar] [CrossRef]
- Liu, J.; Shabbir, B.; Wang, C.; Wan, T.; Ou, Q.; Yu, P.; Tadich, A.; Jiao, X.; Chu, D.; Qi, D. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 2019, 31, 1901644. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Y.; Li, X.; Cao, F.; Gu, Y.; Liu, K.; Liu, X.; Dong, Y.; Ji, J.; Zeng, H. Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv. Mater. Technol. 2017, 2, 1700132. [Google Scholar] [CrossRef]
- Kanak, A.; Kopach, O.; Kanak, L.; Levchuk, I.; Isaiev, M.; Brabec, C.J.; Fochuk, P.; Khalavka, Y. Melting and Crystallization Features of CsPbBr3 Perovskite. Cryst. Growth Des. 2022, 22, 4115–4121. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, F.; Yao, H.; Ci, Z.; Yang, Z.; Jin, Z. Halide perovskites for high-performance X-ray detector. Mater. Today 2021, 48, 155–175. [Google Scholar] [CrossRef]
- Ghosh, J.; Sellin, P.J.; Giri, P.K. Recent advances in lead-free double perovskites for x-ray and photodetection. Nanotechnology 2022, 33, 312001. [Google Scholar] [CrossRef]
- Wu, H.; Ge, Y.; Niu, G.; Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 2021, 4, 144–163. [Google Scholar] [CrossRef]
- Sytnyk, M.; Deumel, S.; Tedde, S.F.; Matt, G.J.; Heiss, W. A perspective on the bright future of metal halide perovskites for X-ray detection. Appl. Phys. Lett. 2019, 115, 190501. [Google Scholar] [CrossRef]
- Kasap, S.; Frey, J.B.; Belev, G.; Tousignant, O.; Mani, H.; Greenspan, J.; Laperriere, L.; Bubon, O.; Reznik, A.; DeCrescenzo, G. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 2011, 11, 5112–5157. [Google Scholar] [CrossRef] [Green Version]
- Yaffe, M.; Rowlands, J. X-ray detectors for digital radiography. Phys. Med. Biol. 1997, 42, 1. [Google Scholar] [CrossRef]
- Tegze, M.; Faigel, G. X-ray holography with atomic resolution. Nature 1996, 380, 49–51. [Google Scholar] [CrossRef]
- Sun, S.; Lu, M.; Gao, X.; Shi, Z.; Bai, X.; Yu, W.W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. 2021, 8, 2102689. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, Y.; Xu, Q.; Wei, H.; Fang, Y.; Wang, Q.; Deng, Y.; Li, T.; Gruverman, A.; Cao, L. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 2017, 11, 315–321. [Google Scholar] [CrossRef]
- Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W.-J.; Niu, G.; Zhu, L. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photonics 2017, 11, 726–732. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, R.; Wang, X.; Ma, W.; Wu, Y.; Chen, X.; Tang, L.; Zhu, H.; Liu, J.; Wu, L.; Zhou, W. Highly sensitive X-ray detector made of layered perovskite-like (NH4) 3Bi2I9 single crystal with anisotropic response. Nat. Photonics 2019, 13, 602–608. [Google Scholar] [CrossRef]
- Xu, X.; Qian, W.; Wang, J.; Yang, J.; Chen, J.; Xiao, S.; Ge, Y.; Yang, S. Sequential Growth of 2D/3D Double-Layer Perovskite Films with Superior X-Ray Detection Performance. Adv. Sci. 2021, 8, 2102730. [Google Scholar] [CrossRef]
Material | Atomic Number | Density (g cm−3) | Band Gap (eV) | μτ Product (cm2 V−1) | Resistivity (Ω cm) | Ref. |
---|---|---|---|---|---|---|
Si | 14 | 2.33 | 1.12 | >1 | 104 | [19] |
α-Se | 34 | 4.3 | 2.1–2.2 | 10−7 | 104–105 | [20] |
CdTe | 48, 52 | 6.2 | 1.44 | 1.5 × 104 | 108–109 | [21] |
Cd0.9Zn0.1Te | 48, 30, 52 | 5.78 | 1.57 | 10−2 | 1011 | [21,22] |
PbI2 | 82, 53 | 6.2 | 2.3–2.6 | 10−5 | 1013 | [20] |
HgI2 | 80, 53 | 6.4 | 2.13 | 10−4 | 1013 | [23] |
Ge | 32 | 5.33 | 1.57 | >1 | 50 | [24] |
CsPbBr3 | 56.4 | 4.55 | 2.2–2.33 | 1.3 × 10−2 | 8.5 × 109 | [25] |
MAPbI3 | 35.6 | 4.3 | 1.5–1.6 | 10−4–10−7 | - | [26] |
MAPbBr3 | 35, 82 | 3.45 | 2.2–2.3 | - | - | [5] |
Diamond | 12 | 3.52 | 5.25–5.5 | - | - | [10,11,12,13,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Mu, G.; Chen, M.; Tang, X. X-ray Detectors Based on Halide Perovskite Materials. Coatings 2023, 13, 211. https://doi.org/10.3390/coatings13010211
Tan Y, Mu G, Chen M, Tang X. X-ray Detectors Based on Halide Perovskite Materials. Coatings. 2023; 13(1):211. https://doi.org/10.3390/coatings13010211
Chicago/Turabian StyleTan, Yimei, Ge Mu, Menglu Chen, and Xin Tang. 2023. "X-ray Detectors Based on Halide Perovskite Materials" Coatings 13, no. 1: 211. https://doi.org/10.3390/coatings13010211
APA StyleTan, Y., Mu, G., Chen, M., & Tang, X. (2023). X-ray Detectors Based on Halide Perovskite Materials. Coatings, 13(1), 211. https://doi.org/10.3390/coatings13010211