Corrosion Resistance of Fe-Cr-Si Alloy Powders Prepared by Mechanical Alloying
Abstract
:1. Introduction
2. Experimental Details and Data Analysis
2.1. Preparation of Samples
2.2. Measurements and Data Analysis
3. Results and Discussion
3.1. Phase Formation and Crystal Structure
3.2. Morphology Analysis
3.3. High-Temperature Corrosion Observed by Tms
3.4. Surface Chemical Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmitt, G.; Schütze, M.; Hays, G.; Burns, W.; Han, E.H.; Pourbaix, A.; Jacobson, G. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control; World Corrosion Organization: New York, NY, USA, 2009. [Google Scholar]
- Mangonon, P. The Principles of Materials Selection for Engineering Design; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Thakur, A.; Kaya, S.; Kumar, A. Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys. Appl. Sci. 2023, 13, 730. [Google Scholar] [CrossRef]
- Khanna, A.S. Introduction to High Temperature Oxidation and Corrosion; CASTI Corrosion Series; ASM International: Materials Park, OH, USA, 2002. [Google Scholar]
- Birks, N.; Meier, G.; Pettit, F. Introduction to the High Temperature Oxidation of Metals; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Idczak, R. Comparison of the Oxidation Process in Pure Iron and Diluted Fe–Si Alloys: A Transmission Mössbauer Spectroscopy Study. Oxid. Met. 2017, 97, 75–88. [Google Scholar] [CrossRef]
- Idczak, R.K. Corrosion of polycrystalline Fe-Si alloys studied by TMS, CEMS and XPS. Corrosion 2018, 74, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Idczak, R. High-Temperature Atmospheric Corrosion of Fe-Cr-Si alloys studied by Mössbauer Spectroscopy. Corrosion 2018, 74, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Idczak, K.; Idczak, R. Investigation of Surface Segregation in Fe-Cr-Si Alloys by XPS. Metall. Mater. Trans. A 2020, 51, 3076–3089. [Google Scholar] [CrossRef]
- Leong, A.; Yang, Q.; Samuel, M.W.; Michael, S.P.; Jinsuo, Z. Oxidation behavior of Fe-Cr-2Si alloys in high temperature steam. Corros. Sci. 2020, 179, 109114. [Google Scholar] [CrossRef]
- Chen, S.F.; Chang, H.Y.; Wang, S.J.; Chen, S.H.; Chen, C.C. Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment. J. Alloys Compd. 2015, 637, 30–35. [Google Scholar] [CrossRef]
- ul Haq Toor, I.; Ahmed, J.; Hussein, M.; Patel, F.; Al-Aqeeli, N. Phase evolution studies during mechanical alloying of Fe(82-x)-Cr18-Six (x = 0, 1, 2, 3) alloy. J. Alloys Compd. 2016, 683, 463–469. [Google Scholar] [CrossRef]
- Raviprasad, K.; Chattopadhyay, K. The influence of critical points and structure and microstructural evolution in iron rich Fe-Si alloys. Acta Metall. Mater. 1993, 41, 609–624. [Google Scholar] [CrossRef]
- Rabkin, E.; Straumal, B.; Semenov, V.; Gust, W.; Predel, B. The influence of an ordering transition on the interdiffusion in Fe-Si alloys. Acta Metall. Mater. 1995, 43, 3075–3083. [Google Scholar] [CrossRef]
- Viala, B.; Degauque, J.; Baricco, M.; Ferrara, E.; Pasquale, M.; Fiorillo, F. Magnetic and mechanical properties of rapidly solidified Fe-Si 6.5 wt% alloys and their interpretation. J. Magn. Magn. Mater. 1996, 160, 315–317. [Google Scholar] [CrossRef]
- Dubiel, S.M.; Cieślak, J. Sigma-Phase in Fe-Cr and Fe-V Alloy Systems and its Physical Properties. Crit. Rev. Solid State Mater. Sci. 2011, 36, 191–208. [Google Scholar] [CrossRef]
- Jacob, A.; Povoden-Karadeniz, E.; Kozeschnik, E. Revised thermodynamic description of the Fe-Cr system based on an improved sublattice model of the σ phase. Calphad 2018, 60, 16–28. [Google Scholar] [CrossRef]
- Idczak, R.; Idczak, K.; Konieczny, R. Fe0.88Cr0.12 and Fe0.85Cr0.15 alloys exposed to air at 870 K studied by TMS, CEMS and XPS. Phys. B Condens. Matter 2018, 528, 27–36. [Google Scholar] [CrossRef]
- Polak, M.; Schiffmann, B. Oxygen induced surface segregation of Fe in Fe–18Cr–3Mo(100). J. Vac. Sci. Technol. A 1987, 5, 590–592. [Google Scholar] [CrossRef]
- Tian, X.; Fu, R.K.; Wang, L.; Chu, P.K. Oxygen-induced nickel segregation in nitrogen plasma implanted AISI 304 stainless steel. Mater. Sci. Eng. A 2001, 316, 200–204. [Google Scholar] [CrossRef]
- Sobota, M.; Idczak, K.; Konieczny, R.; Idczak, R. Influence of the Oxygen Induced Surface Segregation Process of Soulutes on the Anti-corrosion Properties of the Fe-Cr and Fe-Cr-Si Alloys. Metall. Mater. Trans. A 2022, 53, 3083–3099. [Google Scholar] [CrossRef]
- Gupta, R.; Singh Raman, R.; Koch, C.C. Grain growth behaviour and consolidation of ball-milled nanocrystalline Fe–10Cr alloy. Mater. Sci. Eng. A 2008, 494, 253–256. [Google Scholar] [CrossRef]
- Raman, R.S.; Gupta, R.K. Oxidation resistance of nanocrystalline vis-à-vis microcrystalline Fe–Cr alloys. Corros. Sci. 2009, 51, 316–321. [Google Scholar] [CrossRef]
- Singh Raman, R.K. Mechanical Alloying of Elemental Powders into Nanocrystalline (NC) Fe-Cr Alloys: Remarkable Oxidation Resistance of NC Alloys. Metals 2021, 11, 695. [Google Scholar] [CrossRef]
- Idczak, R.; Konieczny, R.; Pikula, T.; Surowiec, Z. Microstructure and Corrosion Properties of Fe-Cr-Si Alloys Prepared by Mechanical Alloying Method. Corrosion 2019, 75, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Gupta, R.P.; Sen, S.K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B 1975, 12, 15–19. [Google Scholar] [CrossRef]
- Scofield, J. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
- Tanuma, S.; Powell, C.J.; Penn, D.R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1994, 21, 165–176. [Google Scholar] [CrossRef]
- Vincze, I.; Campbell, I. Mössbauer measurements in iron based alloys with transition metals. J. Phys. F Met. Phys. 1973, 3, 647–663. [Google Scholar] [CrossRef]
- Dubiel, S.; Cieslak, J. Short-range order in iron-rich Fe-Cr alloys as revealed by Mössbauer Spectroscopy. Phys. Rev. B 2011, 83, 180202. [Google Scholar] [CrossRef]
- Idczak, R. Internal oxidation process in diluted Fe–Cr alloys: A transmission Mössbauer Spectroscopy study. Appl. Phys. A 2016, 122. [Google Scholar] [CrossRef]
- Idczak, R.; Konieczny, R.; Chojcan, J. Atomic short-rage order in the Fe1-xCrx alloys studied by 57Fe Mössbauer Spectroscopy. J. Phys. Chem. Solids 2012, 73, 1095–1098. [Google Scholar] [CrossRef]
- Idczak, R.; Konieczny, R.; Chojcan, J. An Enthalpy of Solution of Silicon in Iron Studied by 57Fe Mössbauer Spectroscopy. Acta Phys. Pol. A 2016, 129, 367–370. [Google Scholar] [CrossRef]
- Gibot, P.; Vidal, L. Original synthesis of chromium (III) oxide nanoparticles. J. Eur. Ceram. Soc. 2010, 30, 911–915. [Google Scholar] [CrossRef]
- Mos, Y.M.; Vermeulen, A.C.; Buisman, C.J.N.; Weijma, J. X-ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration. Geomicrobiol. J. 2018, 35, 511–517. [Google Scholar] [CrossRef]
- Massalski, T.; Okamoto, H.; Subramanian, P.; Kacprzak, L. Binary Alloy Phase Diagrams; Number 3; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Ungár, T.; Borbély, A.; Goren-Muginstein, G.; Berger, S.; Rosen, A. Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide. Nanostruct. Mater. 1999, 11, 103–113. [Google Scholar] [CrossRef]
- de Carvalho, J.; de Medeiros, S.; Morales, M.; Dantas, A.; Carriço, A. Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 2013, 275, 84–87. [Google Scholar] [CrossRef]
- Idczak, K.; Idczak, R.; Konieczny, R. An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS. Phys. B Condens. Matter 2016, 491, 37–45. [Google Scholar] [CrossRef]
- Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications. Chem. Mater. 2002, 14, 969–982. [Google Scholar] [CrossRef]
- Bataillou, L.; Desgranges, C.; Martinelli, L.; Monceau, D. Modelling of the effect of grain boundary diffusion on the oxidation of Ni-Cr alloys at high temperature. Corros. Sci. 2018, 136, 148–160. [Google Scholar] [CrossRef]
- Evans, B.J.; Hafner, S.S. 57Fe Hyperfine Fields in Magnetite (Fe3O4). J. Appl. Phys. 2003, 40, 1411–1413. [Google Scholar] [CrossRef]
- Cao, X.; Prozorov, R.; Koltypin, Y.; Kataby, G.; Felner, I.; Gedanken, A. Synthesis of pure amorphous Fe2O3. J. Mater. Res. 1997, 12, 402–406. [Google Scholar] [CrossRef]
- Palchik, O.; Felner, I.; Kataby, G.; Gedanken, A. Amorphous iron oxide prepared by microwave heating. J. Mater. Res. 2000, 15, 2176–2181. [Google Scholar] [CrossRef]
- Channing, D.; Graham, M. A study of iron oxidation processes by Mössbauer spectroscopy. Corros. Sci. 1972, 12, 271–289. [Google Scholar] [CrossRef]
- Godec, M.; Mandrino, D.; Šuštaršič, B.; Jenko, M. Surface and electrical studies of Fe–Si–B powders for soft magnetic applications. Surf. Interface Anal. 2002, 34, 346–351. [Google Scholar] [CrossRef]
- Parezanović, I.; Spiegel, M. Surface Modification of Various Fe–si and Fe–mn Alloys By Oxidation/Reduction Treatments. Surf. Eng. 2004, 20, 285–291. [Google Scholar] [CrossRef]
- Swaminathan, S.; Spiegel, M. Effect of alloy composition on the selective oxidation of ternary Fe-Si-Cr, Fe-Mn-Cr model alloys. Surf. Interface Anal. 2008, 40, 268–272. [Google Scholar] [CrossRef]
- Bonnet, F.; Ropital, F.; Lecour, P.; Espinat, D.; Huiban, Y.; Gengembre, L.; Berthier, Y.; Marcus, P. Study of the oxide/carbide transition on iron surfaces during catalytic coke formation. Surf. Interface Anal. 2002, 34, 418–422. [Google Scholar] [CrossRef]
- Lince, J.R.; Didziulis, S.V.; Shuh, D.K.; Durbin, T.D.; Yarmoff, J.A. Interaction of O2 with the Fe0.84Cr0.16(001) surface studied by photoelectron spectroscopy. Surf. Sci. 1992, 277, 43–63. [Google Scholar] [CrossRef]
- Kosaka, T.; Suzuki, S.; Inoue, H.; Saito, M.; Waseda, Y.; Matsubara, E. XPS/GIXS studies of thin oxide films formed on Fe-Cr alloys. Appl. Surf. Sci. 1996, 103, 55–61. [Google Scholar] [CrossRef]
- Idhil, A.; Borca, C.; Uldry, A.C.; Zema, N.; Turchini, S.; Catone, D.; Foelske, A.; Grolimund, D.; Samaras, M. The influence of Cr-composition on the local magnetic structure of FeCr alloys. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2012, 284, 1–5. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.; Gerson, A.R.; Smart, R.S. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Steinberger, R.; Walter, J.; Greunz, T.; Duchoslav, J.; Arndt, M.; Molodtsov, S.; Meyer, D.; Stifter, D. XPS study of the effects of long-term Ar+ ion and Ar cluster sputtering on the chemical degradation of hydrozincite and iron oxide. Corros. Sci. 2015, 99, 66–75. [Google Scholar] [CrossRef]
Sample | Space Group | a (nm) | L (nm) |
---|---|---|---|
FeCrSi | |||
20 h MA | Imm | 0.2866(1) | 36.2(2) |
50 h MA | Imm | 0.2863(1) | 28.6(1) |
FeCrSi | |||
10 h MA | Imm | 0.2867(1) | 44.1(3) |
20 h MA | Imm | 0.2868(4) | 31.9(1) |
50 h MA | Imm | 0.2868(3) | 25.1(1) |
Sample | (m) | (m) |
---|---|---|
FeCrSi | ||
20 h MA | 25.7(1.5) | 15.0(1.9) |
50 h MA | 10.6(0.7) | 8.1(1.1) |
FeCrSi | ||
10 h MA | 41.5(1.4) | 17.4(1.7) |
20 h MA | 26.4(1.1) | 14.8(1.4) |
50 h MA | 16.9(1.5) | 10.9(2.0) |
Sample | Exposure Time | ||||
---|---|---|---|---|---|
(h) | (%) | (%) | (%) | ||
FeCrSi | 20 h MA | 32 | 97.0 | 3.0 | 0 |
80 | 95.6 | 4.4 | 0 | ||
108 | 93.8 | 6.2 | 0 | ||
50 h MA | 1 | 57.3 | 26.5 | 16.2 | |
2 | 20.3 | 59.6 | 20.1 | ||
6 | 5.1 | 81.4 | 13.5 | ||
FeCrSi | 10 h MA | 70 | 100 | 0 | 0 |
20 h MA | 70 | 100 | 0 | 0 | |
50 h MA | 1 | 44.0 | 37.5 | 18.5 | |
20 | 0 | 100 | 0 |
Sample | |||||
---|---|---|---|---|---|
FeCrSi | surface | AP | 0.25 | 2.00 | 1.37 |
900 K | 1.48 | 3.69 | 0.77 | ||
bulk | 0.06 | 0.06 | 0 | ||
FeCrSi | surface | AP | 0.27 | 1.59 | 1.14 |
900 K | 2.15 | 3.61 | 0.83 | ||
bulk | 0.12 | 0.06 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobota, M.; Idczak, K.; Konieczny, R.; Idczak, R. Corrosion Resistance of Fe-Cr-Si Alloy Powders Prepared by Mechanical Alloying. Coatings 2023, 13, 1679. https://doi.org/10.3390/coatings13101679
Sobota M, Idczak K, Konieczny R, Idczak R. Corrosion Resistance of Fe-Cr-Si Alloy Powders Prepared by Mechanical Alloying. Coatings. 2023; 13(10):1679. https://doi.org/10.3390/coatings13101679
Chicago/Turabian StyleSobota, Magdalena, Karolina Idczak, Robert Konieczny, and Rafał Idczak. 2023. "Corrosion Resistance of Fe-Cr-Si Alloy Powders Prepared by Mechanical Alloying" Coatings 13, no. 10: 1679. https://doi.org/10.3390/coatings13101679
APA StyleSobota, M., Idczak, K., Konieczny, R., & Idczak, R. (2023). Corrosion Resistance of Fe-Cr-Si Alloy Powders Prepared by Mechanical Alloying. Coatings, 13(10), 1679. https://doi.org/10.3390/coatings13101679