Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt
Abstract
:1. Introduction
2. Raw Materials
2.1. Asphalt
2.2. Polyphosphoris Acid (PPA)
2.3. SBS Modifier
3. Test Method
3.1. Preparation of Composite Modified Asphalt
3.2. Conventional Performance Test
3.3. DSR Test
3.4. BBR Test
3.5. Fourier Transform Infrared Spectroscopy Test
4. Results and Analysis
4.1. Conventional Performance Test Analysis
4.2. Frequency Sweep Test Analysis
4.2.1. High-Temperature Rheological Properties Analysis
4.2.2. Viscoelastic Characteristic Analysis of Principal Curve
4.3. Zero Shear Viscosity Analysis
4.4. Temperature Sweep Test Analysis
4.4.1. Complex Modulus and Phase Angle Analysis
4.4.2. Anti-Rutting Factor Analysis
4.5. Temperature Sensitivity Analysis
4.6. BBR Test Analysis
4.7. Fourier Transform Infrared Spectroscopy Test Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, X.; Ding, H.; Wang, H. Research progress on aging evaluation methods of road asphalt. China J. Highw. 2022, 35, 205–220. [Google Scholar]
- Meng, G.; Xin, R.; Yubo, J.; Meichen, L. Review on aging and anti-aging of asphalt and asphalt mixture. China J. Highw. 2022, 35, 41–59. [Google Scholar]
- Decky, M.; Papanova, Z.; Juhas, M.; Kudelcikova, M. Evaluation of the Effect of Average Annual Temperatures in Slovakia between 1971 and 2020 on Stresses in Rigid Pavements. Land 2022, 11, 764. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Baloo, L.; Habib, N.Z.; Usman, A.; Yousafzai, A.K.; Ahmad, A.; Birniwa, A.H.; Jagaba, A.H.; Noor, A. A comprehensive overview of the utilization of recycled waste materials and technologies in asphalt pavements: Towards environmental and sustainable low-carbon roads. Processes 2023, 11, 2095. [Google Scholar] [CrossRef]
- Aryan, Y.; Dikshit, A.K.; Shinde, A.M. A critical review of the life cycle assessment studies on road pavements and road infrastructures. J. Environ. Manag. 2023, 336, 117697. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Wang, H.; Wang, Y.; Han, S. Integrated Life Cycle Analysis of Cost and CO2 Emissions from Vehicles and Construction Work Activities in Highway Pavement Service Life. Atmosphere 2023, 14, 194. [Google Scholar] [CrossRef]
- Behnood, A.; Gharehveran, M.M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- Qian, J.; Dong, F.; Chen, X.; Gao, Y.; Zhang, L.; Li, M.; Guan, N. Research progress on high temperature rheological properties of polymer modified asphalt. Mater. Introd. 2023, 1–11. Available online: http://kns.cnki.net/kcms/detail/50.1078.TB.20230628.1149.002.html (accessed on 1 November 2023).
- Li, C.; Wang, L.; Feng, L. Study on low temperature rheological properties of polymer modified asphalt binder before and after aging. Funct. Mater. 2016, 47, 2206–2211. [Google Scholar]
- Chen, Q.; Wang, C.; Li, Y.; Huang, S. Performance development of polyurethane elastomer composites in different construction and curing environments. Constr. Build. Mater. 2023, 365, 130047. [Google Scholar] [CrossRef]
- Wang, S.; Dong, F.; Yu, X.; Zu, Y.; Jiang, Y. Effect of compatibilizer composition on anti-aging properties of SBS modified asphalt. J. Build. Mater. 2023, 1–15. [Google Scholar]
- Cao, X.; Gao, H.; Li, Z.; Wu, B.; Li, X. Study on aging characteristics of SBS modified asphalt. Appl. Chem. Eng. 2021, 50, 2739–2744. [Google Scholar]
- Ran, L. Study on Aging Mechanism of SBS Modified Asphalt and Development of High Performance Regenerant under the Condition of Heat, Light and Water Coupling. Ph.D. Thesis, Chongqing Jiaotong University, Chongqing, China, 2017. [Google Scholar]
- Liu, C.; Li, Z.; Liu, S.; Fu, L. Technical analysis and prospect of polyphosphoric acid modified asphalt. China Adhes. 2020, 29, 63–67. [Google Scholar]
- Zhang, L.; Huang, W.; Wei, M.; Ouyang, X.; Wang, Y. Analysis of rheological properties of polyphosphoric acid modified asphalt. J. Mater. Sci. Eng. 2020, 38, 638–642. [Google Scholar]
- Liu, Y.; Pang, S.; Ma, Q. Research progress and prospect of polyphosphoric acid modified asphalt technology. Transp. Res. 2022, 8, 153–164. [Google Scholar]
- Jafari, M.; Akbari Nasrekani, A.; Nakhaei, M.; Babazadeh, A. Evaluation of rutting resistance of asphalt binders and asphalt mixtures modified with polyphosphoric acid. Pet. Sci. Technol. 2017, 35, 141–147. [Google Scholar] [CrossRef]
- Ramayya, V.V.; Ram, V.V.; Krishnaiah, S.; Sandra, A.K. Performance of VG30 paving grade bitumen modified with polyphosphoric acid at medium and high temperature regimes. Constr. Build. Mater. 2016, 105, 157–164. [Google Scholar] [CrossRef]
- Xiao, F.; Amirkhanian, S.; Wang, H.; Hao, P. Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures. Constr. Build. Mater. 2014, 64, 316–323. [Google Scholar] [CrossRef]
- Liang, P.; Liang, M.; Fan, W.; Zhang, Y.; Qian, C.; Ren, S. Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 139, 183–192. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, C.; Yu, J.; Shen, J. Study on the modification and modification mechanism of polyphosphoric acid on different asphalt. J. Build. Mater. 2013, 16, 255–260. [Google Scholar]
- Zhang, Z.; Jia, M.; Wei, L.; Ban, X.; Han, J. Research Progress of Polyphosphoric Acid Modified Asphalt. Zhongwai Highw. 2016, 36, 230–233. [Google Scholar]
- Zhou, Y.; Huang, W.; Fu, X. Low temperature performance of polyphosphoric acid composite modified asphalt. J. Build. Mater. 2017, 20, 996–1000. [Google Scholar]
- Liu, J.; Yan, K.; You, L.; Ge, D.; Wang, Z. Laboratory performance of warm mix asphalt binder containing polyphosphoric acid. Constr. Build. Mater. 2016, 106, 218–227. [Google Scholar] [CrossRef]
- Cui, L. Anti-cracking performance evaluation of polyphosphoric acid and its composite modified asphalt and asphalt mixture. Highw. Eng. 2016, 41, 178–187. [Google Scholar]
- Wang, W.; Li, J.; Wang, D.; Liu, P.; Li, X. The Synergistic Effect of Polyphosphates Acid and Different Compounds of Waste Cooking Oil on Conventional and Rheological Properties of Modified Bitumen. Materials 2022, 15, 8681. [Google Scholar] [CrossRef]
- Amir, T.; Mohammad, R.; Pouria, H.; Behzad, R.; Yousef, Y.; Ali, K. Investigation on the Effect of Ethylene Bis(Stearamide) and Polyphosphoric Acid Modification of Bitumen for Paving Applications. J. Mater. Civ. Eng. 2022, 34, 04022165. [Google Scholar]
- Wang, L.; Pei, K.; Li, C. Study on low temperature rheological properties and constitutive relationship of polyphosphoric acid-SBS composite modified asphalt mixture. J. Build. Mater. 2021, 24, 842–850. [Google Scholar]
- Zhou, Y.; Wei, J.; Shi, S.; Gao, J.; Duan, X.; Chen, Y. The performance of polyphosphoric acid and rubber powder composite modified asphalt. J. Chang. Univ. Nat. Sci. Ed. 2018, 38, 9–17. [Google Scholar]
- Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the storage stability of SBR-modified asphalt binder containing polyphosphoric acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. [Google Scholar] [CrossRef]
- Liu, H.; Chang, R.; Wang, C.; Cao, X.; Hao, P. Road performance of polyphosphoric acid composite modified asphalt mixture. J. Build. Mater. 2017, 20, 293–299. [Google Scholar]
- JTG E20-2011; Test Procedures for Asphalt and Asphalt Mixtures for Highway Engineering. People’s Transportation Publishing House: Beijing, China, 2011.
- AASHTO T313-2012; Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2012.
- Lesueur, D.; Elwardany, M.D.; Planche, J.P.; Christensen, D.; King, G.N. Impact of the asphalt binder rheological behavior on the value of the ΔTc parameter. Constr. Build. Mater. 2021, 293, 123464. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Li, Z.; Ding, S. Rhysiological properties of graphene nanoplatelets/rubber crowd composite modified asphalt. Constr. Build. Mater. 2020, 261, 120505. [Google Scholar] [CrossRef]
- Li, Z.; Guo, T.; Chen, Y.; Dong, L.; Chen, Q.; Hao, M.; Zhao, X.; Liu, J. Study on Rheological Properties of Graphene Oxide/Rubber Crowd Composite-Modified Asphalt. Materials 2022, 15, 6185. [Google Scholar] [CrossRef]
- Zeiada, W.; Liu, H.; Al-Khateeb, G.G.; Shanableh, A.; Samarai, M. Evaluation of test methods for measurement of zero shear viscosity (ZSV) of asphalt binders. Constr. Build. Mater. 2022, 325, 126794. [Google Scholar] [CrossRef]
- Li, G.; Tan, Y.; Fu, Y.; Liu, P.; Fu, C.; Oeser, M. Density, zero shear viscosity and microstructure analysis of asphalt binder using molecular dynamics simulation. Constr. Build. Mater. 2022, 345, 128332. [Google Scholar] [CrossRef]
- Wang, W.; Chen, B.; Shen, J. Zero Shear Viscosity of Hybrid Modified Asphalts and Its Gray Correlation with Other Properties. Materials 2022, 15, 7056. [Google Scholar] [CrossRef]
- Ou, L.; Zhu, H.; Xu, Y.; Chen, R.; Yang, X. Gray correlation entropy analysis of zero shear viscosity and high-temperature rheological parameters of phosphogypsum-modified asphalt. Case Stud. Constr. Mater. 2022, 17, e01448. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q. Application of zero shear viscosity in the evaluation of anti-rutting performance of agricultural film modified asphalt. Zhongwai Highw. 2015, 35, 296–299. [Google Scholar]
- Abed, Y.H.; Al-Haddad, A.H.A. Temperature susceptibility of modified asphalt binders. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kerbala, Iraq, 4–6 November 2019; Volume 671, p. 012121. [Google Scholar]
- Mirzaiyan, D.; Ameri, M.; Amini, A.; Sabouri, M.; Norouzi, A. Evaluation of the performance and temperature susceptibility of gilsonite-and SBS-modified asphalt binders. Constr. Build. Mater. 2019, 207, 679–692. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, G. Temperature Sensitivity Analysis of High Viscosity-Modified Asphalt. J. Highw. Transp. Res. Dev. Engl. Ed. 2023, 17, 1–8. [Google Scholar] [CrossRef]
Item | Unit | Result | Specification | |
---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 69.8 | 60~80 | |
5 °C ductility (5 cm/min) | cm | 10.3 | —— | |
10 °C ductility (5 cm/min) | cm | 51 | ≥20 | |
15 °C ductility (5 cm/min) | cm | >150 | ≥100 | |
Softening point | ℃ | 47.6 | ≥46 | |
Penetration index PI | —— | −0.768 | −1.5~1.0 | |
Rolling thin-film oven test (RTFOT) | Mass variation | % | −0.264 | −0.8~0.8 |
Residual penetration ratio (25 °C) | % | 62.6 | ≥61 | |
Residual ductility (10 °C) | cm | 7.1 | ≥6 |
Item | Unit | Result |
---|---|---|
P2O5 Concentration | % | 84.7 |
25 °C Vapor pressure | Pa | 2.64 × 10−6 |
Boiling point | ℃ | 552 |
Chloride (Cl) content | % | 0.0002 |
Iron (Fe) content | % | 0.0013 |
Arsenic (As) content | % | 0.0068 |
Heavy metal (Pb) content | % | 0.0017 |
Item | Unit | Result | Specification |
---|---|---|---|
Molecular structure | —— | line style | line style |
Ash | % | 0.09 | ≤0.20 |
300% Stress at definite elongation | MPa | 4.1 | ≥3.5 |
Tensile strength | MPa | 27.8 | ≥24.0 |
Tensile elongation | % | 736 | ≥730 |
Volatile | % | 0.57 | ≤0.70 |
S/B mass ratio | —— | 20/80 | 20/80 |
Item | Unit | Matrix Asphalt | 5%SBS | 0.5%PPA/3.5%SBS | 0.75%PPA/3.5%SBS | 1%PPA/3.5% SBS | |
---|---|---|---|---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 69.8 | 52.4 | 55.2 | 52.3 | 49.6 | |
Softening point | °C | 47.6 | 67.0 | 50.2 | 58.4 | 63.8 | |
Ductility (5 cm/min, 5 °C) | cm | 10.3 | 30.1 | 26.9 | 20.5 | 17.0 | |
Brookfield viscosity (135 °C) | Pa·s | 0.47 | 1.16 | 1.56 | 2.02 | 2.72 | |
RTFOT | Mass variation | % | 0.264 | 0.220 | 0.206 | 0.194 | 0.169 |
Residual penetration ratio | —— | 62.6 | 65.9 | 62.9 | 64.1 | 67.0 | |
Softening point increment | —— | 6.6 | 8.5 | 6.8 | 6.2 | 3.9 |
Temperature/°C | Curve-Fitting Equation | R2 |
---|---|---|
40 | y = 4.3875 + 0.71555x | 0.99982 |
52 | y = 3.58965 + 0.78339x | 0.99798 |
64 | y = 3.05983 + 0.78662x | 0.99849 |
76 | y = 2.42496 + 0.82765x | 0.99985 |
88 | y = 2.04866 + 0.80207x | 0.99993 |
Temperature/°C | lgω(G* = 1 kP, rad/s) | Displacement Factor |
---|---|---|
40 | −1.9391 | 0 |
52 | −0.7527 | 1.1864 |
64 | −0.0761 | 1.8630 |
76 | 0.6948 | 2.6339 |
88 | 1.1861 | 3.1252 |
Scheme | Temperature/°C | Curve-Fitting Equation | R2 |
---|---|---|---|
0.5%PPA/3.5%SBS | 40 | y = 4.401 + 0.69712x | 0.99997 |
52 | y = 3.72489 + 0.70901x | 0.99989 | |
64 | y = 3.08663 + 0.76396x | 0.99898 | |
76 | y = 2.29102 + 0.83766x | 0.99957 | |
88 | y = 1.93556 + 0.85827x | 0.99993 | |
0.75%PPA/3.5%SBS | 40 | y = 4.42343 + 0.67596x | 0.99992 |
52 | y = 3.83727 + 0.69351x | 0.9997 | |
64 | y = 3.18477 + 0.75266x | 0.99835 | |
76 | y = 2.5458 + 0.82381x | 0.99951 | |
88 | y = 2.02573 + 0.86171x | 0.9996 | |
1%PPA/3.5%SBS | 40 | y = 4.60696 + 0.61414x | 0.99998 |
52 | y = 4.03362 + 0.63192x | 0.99986 | |
64 | y = 3.48315 + 0.65615x | 0.99972 | |
76 | y = 2.91344 + 0.71499x | 0.99875 | |
88 | y = 2.3976 + 0.78802x | 0.99915 |
Scheme | Temperature/°C | lgω(G* = 1 kP, rad/s) | Displacement Factor |
---|---|---|---|
0.5%PPA/3.5%SBS | 40 | −2.0097 | 0 |
52 | −1.0224 | 0.9873 | |
64 | −0.1134 | 1.8963 | |
76 | 0.8464 | 2.8561 | |
88 | 1.2402 | 3.2499 | |
0.75%PPA/3.5%SBS | 40 | −2.1058 | 0 |
52 | −1.2073 | 0.8985 | |
64 | −0.2455 | 1.8603 | |
76 | 0.5513 | 2.6571 | |
88 | 1.1306 | 3.2364 | |
1%PPA/3.5%SBS | 40 | −2.6166 | 0 |
52 | −1.6357 | 0.9809 | |
64 | −0.7363 | 1.8803 | |
76 | 0.1211 | 2.7377 | |
88 | 0.7644 | 3.3810 |
Scheme | ZSV | R2 | ||
---|---|---|---|---|
Cross Model | Carreau Model | Cross Model | Carreau Model | |
5%SBS | 2347.69435 | 1662.84815 | 0.99959 | 0.99316 |
0.5%PPA/3.5%SBS | 3145.37399 | 1937.65434 | 0.99996 | 0.99699 |
0.75%PPA/3.5%SBS | 3516.56269 | 2385.98834 | 0.9999 | 0.99657 |
1%PPA/3.5%SBS | 20,935.59206 | 7371.37261 | 0.99989 | 0.99982 |
Temperature/°C | Kelvin Temperature/K | G*/Pa | sinδ | η’/Pa·s | lg(lg(η’)) |
---|---|---|---|---|---|
46 | 318.92 | 46,115.5 | 0.9011 | 7652.8754 | 0.5893 |
52 | 325.10 | 22,352.8 | 0.9079 | 3576.1537 | 0.5506 |
58 | 331.11 | 11,348.9 | 0.9247 | 1661.0299 | 0.5079 |
64 | 337.12 | 5797.77 | 0.9463 | 758.1339 | 0.4594 |
70 | 343.10 | 3024.18 | 0.9639 | 361.6789 | 0.4080 |
76 | 349.12 | 1643.94 | 0.9747 | 186.1669 | 0.3560 |
82 | 355.10 | 908.523 | 0.9812 | 99.6240 | 0.3007 |
Temperature/°C | Kelvin Temperature/K | G*/Pa | sinδ | η’/Pa·s | lg(lg(η’)) |
---|---|---|---|---|---|
46 | 318.92 | 47,193.5 | 0.8897 | 8331.7158 | 0.5934 |
52 | 325.10 | 23,119.1 | 0.8921 | 4027.5924 | 0.5569 |
58 | 331.11 | 12,314.7 | 0.8965 | 2094.8806 | 0.5213 |
64 | 337.12 | 6645.97 | 0.9069 | 1068.9688 | 0.4813 |
70 | 343.10 | 3667.66 | 0.9217 | 545.1113 | 0.4372 |
76 | 349.12 | 2138.89 | 0.9373 | 293.0784 | 0.3922 |
82 | 355.10 | 1250.69 | 0.9514 | 159.3204 | 0.3429 |
Temperature/°C | Kelvin Temperature/K | G*/Pa | sinδ | η’/Pa·s | lg(lg(η’)) |
---|---|---|---|---|---|
46 | 318.92 | 70,805.5 | 0.8727 | 13,729.9659 | 0.6168 |
52 | 325.10 | 37,805.3 | 0.8823 | 6949.2353 | 0.5846 |
58 | 331.11 | 19,368.2 | 0.8868 | 3473.2014 | 0.5491 |
64 | 337.12 | 10,950.1 | 0.8916 | 1913.1437 | 0.5161 |
70 | 343.10 | 6248.01 | 0.9001 | 1042.2974 | 0.4797 |
76 | 349.12 | 3530.76 | 0.9139 | 547.0778 | 0.4374 |
82 | 355.10 | 2049.36 | 0.9301 | 291.5504 | 0.3918 |
Temperature/°C | Kelvin Temperature/K | G*/Pa | sinδ | η’/Pa·s | lg(lg(η’)) |
---|---|---|---|---|---|
46 | 318.92 | 78,196.9 | 0.8231 | 20,153.8209 | 0.6339 |
52 | 325.10 | 46,442.8 | 0.8366 | 11,058.2239 | 0.6068 |
58 | 331.11 | 26,802.3 | 0.8443 | 6102.9137 | 0.5781 |
64 | 337.12 | 15,639 | 0.8532 | 3385.2959 | 0.5477 |
70 | 343.10 | 9250.52 | 0.8637 | 1886.0519 | 0.5153 |
76 | 349.12 | 5656.84 | 0.8775 | 1067.7738 | 0.4812 |
82 | 355.10 | 3377.48 | 0.8965 | 574.4235 | 0.4408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, X.; Chen, Y.; Li, Z.; Guo, T.; Wang, J.; Jin, L. Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt. Coatings 2023, 13, 2003. https://doi.org/10.3390/coatings13122003
Niu X, Chen Y, Li Z, Guo T, Wang J, Jin L. Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt. Coatings. 2023; 13(12):2003. https://doi.org/10.3390/coatings13122003
Chicago/Turabian StyleNiu, Xiangjie, Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Jing Wang, and Lihui Jin. 2023. "Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt" Coatings 13, no. 12: 2003. https://doi.org/10.3390/coatings13122003
APA StyleNiu, X., Chen, Y., Li, Z., Guo, T., Wang, J., & Jin, L. (2023). Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt. Coatings, 13(12), 2003. https://doi.org/10.3390/coatings13122003