Sustainable Textile Fabric Coatings: From Materials to Applications
Author Contributions
Conflicts of Interest
References
- Attia, N.F.; Mousa, M. Synthesis of smart coating for furniture textile and their flammability and hydrophobic properties. Prog. Org. Coat. 2017, 110, 204–209. [Google Scholar] [CrossRef]
- Attia, N.F.; Osama, R.; Elashery, S.E.A.; Abul, K.; Al-Sehemi, A.G.; Algarni, H. Recent advances of sustainable textile fabric coatings for UV protection properties. Coatings 2022, 12, 1597. [Google Scholar] [CrossRef]
- Zeng, F.; Qin, Z.; Chen, Y.; Shan, X. Constructing polyaniline nanowire arrays as efficient traps on graphene sheets to promote compound synergetic effect in the assembled coating for multifunctional protective cotton fabrics. Chem. Eng. J. 2021, 426, 130819. [Google Scholar]
- Attia, N.F.; Elashery, S.E.A.; Zakria, A.M.; Eltaweil, A.S.; Oh, H. Recent advances in graphene sheets as new generation of flame-retardant materials. Mater. Sci. Eng. B 2021, 274, 115460. [Google Scholar] [CrossRef]
- Attia, N.F.; Ebissy, A.A.E.; Morsy, M.S.; Sadak, R.A.; Gamal, H. Influence of textile fabrics structures on thermal, UV shielding, and mechanical properties of textile fabrics coated with sustainable coating. J. Nat. Fibers 2021, 18, 2189–2196. [Google Scholar] [CrossRef]
- Attia, N.F.; Eid, A.M.; Soliman, M.A.; Nagy, M. Exfoliation and decoration of graphene sheets with silver nanoparticles and their antibacterial properties. J. Polym. Environ. 2018, 26, 1072–1077. [Google Scholar] [CrossRef]
- Liu, A.; Hu, X.; Yang, L.; Yang, X.; Dong, J.; Chen, S.; Tan, Y.; Hao, L.; Wang, R. The synergetic modification of surface micro-dissolution and cationization for fabricating cotton fabrics with high UV resistance and conductivity by enriched GO coating. Cellulose 2020, 27, 10489–10500. [Google Scholar] [CrossRef]
- Attia, N.F.; Soliman, M.H.; El-Sakka, S.S. Facile Route for synthesis of novel flame retardant, reinforcement and antibacterial textile fabrics coatings. Coatings 2020, 10, 576. [Google Scholar] [CrossRef]
- Attia, N.F.; Ahmed, H.E.; El Ebissy, A.A.; El Ashery, S.E.A. Green and novel approach for enhancing flame retardancy, UV protection and mechanical properties of fabrics utilized in historical textile fabrics conservation. Prog. Org. Coat. 2022, 166, 106822. [Google Scholar] [CrossRef]
- Shi, Y.M.; Li, L.J. Chemically modified graphene: Flame retardant or fuel for combustion? J. Mater. Chem. 2011, 21, 3277–3279. [Google Scholar] [CrossRef]
- United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 16 January 2023).
- Attia, N.F.; Asma, M.; Hussein, A.; El-Demerdash, A.M.; Kandil, S. Greener bio-based spherical nanoparticles for efficient multilayer textile fabrics nanocoating with outstanding fire retardancy, toxic gases suppression, reinforcement and antibacterial properties. Surf. Interf. 2023, 36, 102595. [Google Scholar] [CrossRef]
- Attia, N.F.; Asma, M.; Hussein, A.; El-Demerdash, A.M.; Kandil, S. Bio-inspired one-dimensional based textile fabric coating for integrating high flame retardancy, antibacterial, toxic gases suppression, antiviral and reinforcement properties. Polym. Degrad. Stab. 2022, 205, 110152. [Google Scholar] [CrossRef]
- Sweilam, M.N.; Varcoe, J.R.; Crean, C. Fabrication and optimization of fiber-based lithium sensor: A step toward wearable sensors for lithium drug monitoring in interstitial fluid. ACS Sens. 2018, 3, 1802–1810. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, S.; Lin, Y.; Yuan, X.; Liu, L. Silver nanowires coated on cotton for flexible pressure sensors. J. Mater. Chem. C 2016, 4, 935–943. [Google Scholar] [CrossRef]
- Arjmand, M.; Moud, A.A.; Li, Y.; Sundararaj, U. Outstanding electromagnetic interference shielding of silver nanowires: Comparison with carbon nanotubes. RSC Adv. 2015, 5, 56590–56598. [Google Scholar] [CrossRef]
- Maheshwari, N.; Abd-Ellah, M.; Goldthorpe, I.A. Transfer printing of silver nanowire conductive ink for e-textile applications. Flex. Print. Electron. 2019, 4, 025005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, N.F.; Elashery, S.E.A.; Abd-Ellah, M. Sustainable Textile Fabric Coatings: From Materials to Applications. Coatings 2023, 13, 336. https://doi.org/10.3390/coatings13020336
Attia NF, Elashery SEA, Abd-Ellah M. Sustainable Textile Fabric Coatings: From Materials to Applications. Coatings. 2023; 13(2):336. https://doi.org/10.3390/coatings13020336
Chicago/Turabian StyleAttia, Nour F., Sally E. A. Elashery, and Marwa Abd-Ellah. 2023. "Sustainable Textile Fabric Coatings: From Materials to Applications" Coatings 13, no. 2: 336. https://doi.org/10.3390/coatings13020336
APA StyleAttia, N. F., Elashery, S. E. A., & Abd-Ellah, M. (2023). Sustainable Textile Fabric Coatings: From Materials to Applications. Coatings, 13(2), 336. https://doi.org/10.3390/coatings13020336