Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipments
3. Results and Discussion
3.1. WDXRF and XRD
3.2. Chromatic Parameters
3.3. Thermogravimetry
3.4. Porosity
3.5. FTIR
3.6. Raman
- Frequency of the phosphate group in the region 1230–1060 and 530–360 cm−1;
- aluminum is located in the region of 740–570 cm−1;
- quartz is characterized by a prominent peak at 467 cm–1 and a peak of medium intensity at 210 cm–1;
- K-feldspars and plagioclases may still be possible; the first group shows characteristic lines almost centered at 455, 475, and 513 cm–1;
- rutile can be identified at 440 and 610 cm–1.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mățău, F.; Chișcan, O.; Pintilei, M.; Garvăn, D.; Stancu, A. Technological features of the chalcolithic pottery from Târpești (Neamț County, Eastern Romania). Mediterr. Archaeol. Archaeom. 2019, 19, 93–104. [Google Scholar]
- Diaconu, V. Recunoașteri arheologice de suprafaţă în zona orașului Târgu Neamţ. Mem. Antiq. 2007, 24, 87–119. [Google Scholar]
- Preoteasa, C.; Diaconu, V.; Mischka, D.; Mischka, C.; Praschl, B.; Schaffer, M.; Wanka, F.; Gapp, F. Topolița, com. Grumăzești, jud. Neamț. Punct: La Nord-Vest de Sat, in Cronica Cercetărilor Arheologice din România. Campania 2016; Institutul Național al Patrimoniului: Bucharest, Romania, 2017; p. 237. [Google Scholar]
- Diaconu, V.; Gafincu, A.-M.; Hanceanu, G.D.; Nicola, C.-D.; Preoteasa, C.; Stiglet, D.-I.; Pirnau, R. Topolița, com. Grumăzești, jud. Neamț. Punct: La Nord-Vest de sat, in Cronica Cercetărilor Arheologice din România. Campania 2018; Institutul Național al Patrimoniului: Bucharest, Romania, 2019; pp. 392–397. [Google Scholar]
- Pîrnău, R.G.; Patriche, C.V.; Roșca, B.; Mirea, D.A.; Diaconu, V.; Stan, C.O.; Bobric, E.D.; Vasiliniuc, I.; Mănăilescu, C.; Rusu, C. Insights into the Phaeozems pedogenesis using total elemental composition analysis. A case study from north-eastern Romania. Geoderma 2022, 409, 115604. [Google Scholar] [CrossRef]
- Ion, R.-M.; Barbu, M.G.; Gonciar, A.; Vasilievici, G.; Gheboianu, A.I.; Slamnoiu-Teodorescu, S.; David, M.E.; Iancu, L.; Grigorescu, R.M. A Multi-Analytical Investigation of Roman Frescoes from Rapoltu Mare (Romania). Coatings 2022, 12, 530. [Google Scholar] [CrossRef]
- Ion, R.-M.; Ion, M.-L.; Fierascu, R.; Serban, S.; Dumitriu, I.; Radovici, C.; Bauman, I.; Cosulet, S.; Niculescu, V. Thermal analysis of Romanian ancient ceramics. J. Therm. Anal. Calorim. 2010, 102, 393–398. [Google Scholar] [CrossRef]
- Ion, R.M.; Iancu, L.; David, M.E.; Grigorescu, R.M.; Trica, B.; Somoghi, R.; Vasile, S.F.; Dulama, I.D.; Gheboianu, A.I.; Tincu, S. Multi-Analytical Characterization of Corvins’ Castle—Deserted Tower. Construction Materials and Conservation Tests. Heritage 2020, 3, 941–964. [Google Scholar] [CrossRef]
- Ion, R.-M.; Tincu, S.; Minca, I.; Dulama, I.; Bucurica, I.; Ion, M.; Gheboianu, A. Instrumental Analytical Techniques Applied to Old Gate Tower from Corvins’ Castle. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012050. [Google Scholar] [CrossRef]
- Ion, R.-M.; Fierăscu, R.-C.; Teodorescu, S.; Fierăscu, I.; Bunghez, I.-R.; Ţurcanu-Caruţiu, D.; Ion, M.-L. Ceramic materials based on clay minerals in cultural heritage study. Clays Clay Miner. Ceram. Mater. Based Clay Miner. 2016, 26, 159–184. [Google Scholar]
- ISO/CIE 11664-2:2022; Colorimetry—Part 2: CIE Standard Illuminants. ISO: Geneva, Switzerland, 2006.
- Ion, R.-M.; Ion, M.L.; Fierascu, R.C.; Dumitriu, I.; Rugina, F.; Niculescu, V.I.R. Studii de arheometrie asupra unor artefacte ceramice din patrimoniul muzeal românesc. Bul. Univ. Valahia Din Targoviste–Sect. Ing. Mater. Si Mecatronica 2007, 5, 62–68. [Google Scholar]
- Bishop, R.L.; Rands, R.L.; Holley, G.R. Ceramic compositional analysis in archaeological perspective. In Advances in Archaeological Method and Theory; Elsevier: Amsterdam, The Netherlands, 1982; pp. 275–330. [Google Scholar]
- Tite, M.S. Ceramic production, provenance and use—A review. Archaeometry 2008, 50, 216–231. [Google Scholar] [CrossRef]
- Rice, P.M. Pottery Analysis: A Sourcebook; University of Chicago press: Chicago, IL, USA, 2015. [Google Scholar]
- Ion, R.-M.; Iancu, L.; Grigorescu, R.M.; Slamnoiu-Teodorescu, S.; Dulama, I.D.; Bucurica, I.A. Degradation Products Assessment of the Wooden Painted Surfaces from a XVIIth Heritage Monastery. Appl. Sci. 2023, 13, 2124. [Google Scholar] [CrossRef]
- Warr, L. IMA-CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 1–35. [Google Scholar] [CrossRef]
- Buxeda, I.; Garrigos, J.; Kilikoglou, V.; Day, P.M. Chemical and mineralogical alteration of ceramics from a Late Bronze Age kiln at Kommos, Crete: The effect on the formation of a reference group. Archaeometry 2001, 43, 349–371. [Google Scholar]
- Schwedt, A.; Mommsen, H.; Zacharias, N.; Buxeda i Garrigos, J. Analcime crystallization and compositional profiles—Comparing approaches to detect post-depositional alterations in archaeological pottery. Archaeometry 2006, 48, 237–251. [Google Scholar] [CrossRef]
- Iordanidis, A.; Garcia-Guineab, J.; Karamitrou-Mentessidic, G. Analytical study of ancient pottery from the archaeological site of Aiani, northern Greece. Mater. Charact. 2009, 60, 292–302. [Google Scholar] [CrossRef]
- Maggetti, M.; Neururer, C.; Ramseyer, D. Temperature evolution inside a pot during experimental surface (bonfire) firing. Appl. Clay Sci. 2011, 53, 500–508. [Google Scholar] [CrossRef]
- Fabbri, B.; Gualtieri, S.; Shoval, S. The presence of calcite in archeological ceramics. J. Eur. Ceram. Soc. 2014, 34, 1899–1911. [Google Scholar] [CrossRef]
- Opriș, V.; Velea, A.; Secu, M.; Rostas, A.-M.; Buruiană, A.-T.; Simion, C.-A.; Mirea, D.-A.; Matei, E.; Bartha, C.; Dimache, M. ‘Put variety in White’: Multi-analytical investigation of the white pigments inlaid on Early Chalcolithic pottery from Southern Romania. J. Archaeol. Sci. Rep. 2022, 42, 103402. [Google Scholar] [CrossRef]
- Ndreçka, E.; Civici, N.; Beqiraj, E.; Gjipali, I. Results from Multi Technique Investigation of Pottery from Different Early Neolithic Sites in Albania. J. Mater. Sci. Chem. Eng. 2017, 5, 10–26. [Google Scholar] [CrossRef]
- Agresti, J.; Indelicato, C.; Perotti, M.; Moreschi, R.; Osticioli, I.; Cacciari, I.; Mencaglia, A.A.; Siano, S. Quantitative Compositional Analyses of Calcareous Rocks for Lime Industry Using LIBS. Molecules 2022, 27, 1813. [Google Scholar] [CrossRef]
- Duggan, M.B.; Jones, M.T.; Richards, D.N.; Kamprad, J.L. Phosphate minerals in altered andesite from Mount Perry, Queensland, Australia. Can. Mineral. 1990, 28, 125–131. [Google Scholar]
- Ek, R.; Nysten, P. Phosphate mineralogy of the Hålsjöberg and Hökensås kyanite deposits. Geol. Foereningen Stockh. Foerhandlingar 1990, 112, 9–18. [Google Scholar] [CrossRef]
- Gallagher, M.; Gerards, J. Berlinite from Rwanda. Mineral. Mag. J. Mineral. Soc. 1963, 33, 613–615. [Google Scholar] [CrossRef]
- Reif, J. Berlinite, AlPO_4, from sulphide ore deposit Zlate Hory West. Chasopis Miner. Geol. 1989, 34, 363–372. [Google Scholar]
- Onac, B.P.; White, W.B. First reported sedimentary occurrence of berlinite (AlPO4) in phosphate-bearing sediments from Cioclovina Cave, Romania. Am. Mineral. 2003, 88, 1395–1397. [Google Scholar] [CrossRef]
- McFarlane, D.A.; Lundberg, J. New records of guano-associated minerals from caves in northwestern Borneo. Int. J. Speleol. 2018, 47, 119–126. [Google Scholar] [CrossRef]
- Zong, Y.-B.; Zhao, C.-Y.; Chen, W.-H.; Liu, Z.-B.; Cang, D.-Q. Preparation of hydro-sodalite from fly ash using a hydrothermal method with a submolten salt system and study of the phase transition process. Int. J. Miner. Metall. Mater. 2020, 27, 55–62. [Google Scholar] [CrossRef]
- Albidah, A.; Alghannam, M.; Abbas, H.; Almusallam, T.; Al-Salloum, Y. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J. Mater. Res. Technol. 2021, 10, 84–98. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Cristelo, N.; Miranda, T.; Palomo, Á. Sustainable alkali activated materials: Precursor and activator derived from industrial wastes. J. Clean. Prod. 2017, 162, 1200–1209. [Google Scholar] [CrossRef]
- Kozhukhova, N.; Zhernovskaya, I.; Teslya, A.Y.; Kozhukhova, M.; Yakovlev, E. High temperature effect on structure formation and performance of hybrid geopolymers. J. Phys. Conf. Ser. 2019, 1353, 012066. [Google Scholar] [CrossRef]
- Maggetti, M. Phase analysis and its significance for technology and origin. In Archaeological Ceramics; Olin, J.S., Franklin, A., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1982; pp. 121–133. [Google Scholar]
- Dolenec, S.; Lux, J. Spectroscopic and porosimetric analyses of Roman pottery from an archaeological site near Mošnje, Slovenia. Mater. Tehnol. 2015, 49, 503–508. [Google Scholar] [CrossRef]
- Lira, C.; Fredel, M.C.; da Silveira, M.D.; Alarcon, O.E. Effect of carbonates on firing shrinkage and on moisture expansion of porous ceramic tiles. In Proceedings of the Qualicer 98: V World Congress on Ceramic Tile Quality, Castellon, Spain, 8–11 March 1998; pp. 101–106. [Google Scholar]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Kumar Mishra, A.; Mishra, A.; Anshumali. Geochemical characterization of bricks used in historical monuments of 14–18th century CE of Haryana region of the Indian subcontinent: Reference to raw materials and production technique. Constr. Build. Mater. 2021, 269, 121802. [Google Scholar] [CrossRef]
- Hlavay, J.; Jonas, K.; Elek, S.; Inczedy, J. Characterization of the Particle Size and the Crystallinity of Certain Minerals by IR Spectrophotometry and other Instrumental Methods—II. Investigations on Quartz and Feldspar. Clays Clay Miner. 1978, 26, 139–143. [Google Scholar] [CrossRef]
- Legodi, M.; De Waal, D. Raman spectroscopic study of ancient South African domestic clay pottery. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 135–142. [Google Scholar] [CrossRef]
- Medeghini, L.; Lottici, P.P.; De Vito, C.; Mignardi, S.; Bersani, D. Micro-Raman spectroscopy and ancient ceramics: Applications and problems. J. Raman Spectrosc. 2014, 45, 1244–1250. [Google Scholar] [CrossRef]
No. of Sample | Visual Aspect | Optical Microscopy | Stereomicroscopy |
---|---|---|---|
1A | |||
1B | |||
1C | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7A (white pigment) | |||
7B (red substrate) |
Sample | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7A | Sample 7B |
---|---|---|---|---|---|---|---|---|
Component | Result, % | Result, % | Result, % | Result, % | Result, % | Result, % | Result, % | Result, % |
Na2O | 0.876 ± 0.33271 | 1.1547 ± 0.44055 | 1.3335 ± 0.42345 | 1.7769 ± 0.5086 | 0.9163 ± 0.352 | 5.7411 ± 0.35973 | ||
MgO | 2.1174 ± 0.13284 | 2.6104 ± 0.19126 | 2.5734 ± 0.18539 | 3.526 ± 0.22631 | 2.7062 ± 0.18788 | 3.4099 ± 0.23444 | 3.265 ± 0.16829 | 2.447 ± 0.15046 |
Al2O3 | 20.5967 ± 0.08506 | 20.4475 ± 0.10211 | 22.1634 ± 0.11004 | 22.5278 ± 0.11852 | 23.9212 ± 0.1065 | 24.3272 ± 0.12217 | 23.8336 ± 0.1064 | 22.041 ± 0.08856 |
SiO2 | 63.0808 ± 0.13654 | 60.6971 ± 0.15081 | 59.9206 ± 0.14352 | 53.9348 ± 0.15167 | 56.1471 ± 0.15129 | 50.9206 ± 0.16784 | 48.6089 ± 0.12867 | 54.4279 ± 0.12469 |
P2O5 | 0.5403 ± 0.02831 | 2.799 ± 0.03708 | 1.4651 ± 0.03321 | 3.366 ± 0.04292 | 3.8759 ± 0.0394 | 3.7408 ± 0.04458 | 8.3896 ± 0.04326 | 1.2258 ± 0.02505 |
SO3 | 0.043 ± 0.0155 | 0.078 ± 0.01842 | 0.061 ± 0.0198 | 0.0679 ± 0.02521 | 0.045 ± 0.02249 | 0.0447 ± 0.0145 | ||
Cl | 0.0176 ± 0.00765 | 0.0252 ± 0.00809 | 3.0729 ± 0.03897 | 0.0134 ± 0.01164 | 0.0866 ± 0.00615 | |||
K2O | 2.5105 ± 0.02635 | 2.5185 ± 0.03583 | 2.6434 ± 0.03266 | 2.9618 ± 0.0386 | 2.9934 ± 0.03895 | 2.8486 ± 0.04633 | 2.1593 ± 0.03178 | 2.7978 ± 0.02536 |
CaO | 1.2381 ± 0.02204 | 1.6337 ± 0.02754 | 1.5515 ± 0.02681 | 3.0729 ± 0.03897 | 1.579 ± 0.02999 | 1.8524 ± 0.03778 | 3.8639 ± 0.03292 | 5.093 ± 0.02779 |
TiO2 | 0.8534 ± 0.04482 | 0.9166 ± 0.06044 | 0.7303 ± 0.04474 | 1.0762 ± 0.05902 | 0.8335 ± 0.06292 | 1.0161 ± 0.07512 | 0.7801 ± 0.03887 | 0.6776 ± 0.05389 |
Cr2O3 | 0.0413 ± 0.0211 | 0.0637 ± 0.0241 | 0.0588 ± 0.02647 | |||||
MnO | 0.1393 ± 0.01759 | 0.1779 ± 0.01835 | 0.196 ± 0.0166 | 0.1235 ± 0.02397 | 0.1202 ± 0.01731 | 0.1757 ± 0.02248 | 0.1669 ± 0.02335 | 0.1135 ± 0.01396 |
Fe2O3 | 7.8166 ± 0.01663 | 6.986 ± 0.02827 | 7.2758 ± 0.01993 | 9.2826 ± 0.0272 | 7.7043 ± 0.02522 | 9.7643 ± 0.02909 | 7.8634 ± 0.02673 | 5.2828 ± 0.02306 |
ZnO | 0.0146 ± 0.00807 | 0.0253 ± 0.00981 | 0.0278 ± 0.01166 | 0.0295 ± 0.01434 | 0.029 ± 0.01098 | 0.0533 ± 0.01633 | 0.0333 ± 0.01168 | |
Rb2O | 0.0212 ± 0.00547 | 0.0157 ± 0.00744 | 0.0159 ± 0.00698 | 0.0352 ± 0.00844 | 0.0294 ± 0.00958 | 0.033 ± 0.01227 | 0.0159 ± 0.00847 |
No. | Sample | Specific Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|
1 | 7A (white) | 58.54 | 0.0605 | 4.133 |
2 | 7B (red) | 39.38 | 0.0288 | 2.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ion, R.-M.; Diaconu, V.; Vasilievici, G.; Iancu, L.; Grigorescu, R.M.; Mîrț, L.-A.; Alexandrescu, E.; Gheboianu, A.I.; Slamnoiu-Teodorescu, S. Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania. Coatings 2023, 13, 488. https://doi.org/10.3390/coatings13030488
Ion R-M, Diaconu V, Vasilievici G, Iancu L, Grigorescu RM, Mîrț L-A, Alexandrescu E, Gheboianu AI, Slamnoiu-Teodorescu S. Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania. Coatings. 2023; 13(3):488. https://doi.org/10.3390/coatings13030488
Chicago/Turabian StyleIon, Rodica-Mariana, Vasile Diaconu, Gabriel Vasilievici, Lorena Iancu, Ramona Marina Grigorescu, Luiza-Andreea Mîrț, Elvira Alexandrescu, Anca Irina Gheboianu, and Sofia Slamnoiu-Teodorescu. 2023. "Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania" Coatings 13, no. 3: 488. https://doi.org/10.3390/coatings13030488
APA StyleIon, R.-M., Diaconu, V., Vasilievici, G., Iancu, L., Grigorescu, R. M., Mîrț, L.-A., Alexandrescu, E., Gheboianu, A. I., & Slamnoiu-Teodorescu, S. (2023). Archaeometric Investigations of the Chalcolithic Pottery from Topolița—Neamț County, Romania. Coatings, 13(3), 488. https://doi.org/10.3390/coatings13030488