Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Visual Inspection and Topographical Characterization Using AFM
3.2. Structural and Compositional Characterization with XRD and Uraman
3.3. Electrical and Thermoelectric Transport
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dresselhaus, M.; Chen, G.; Tang, M.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.-P.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Chen, R.; Lee, J.; Lee, W.; Li, D. Thermoelectrics of Nanowires. Chem. Rev. 2019, 119, 9260–9302. [Google Scholar] [CrossRef] [PubMed]
- Prete, D.; Dimaggio, E.; Demontis, V.; Zannier, V.; Rodriguez-Douton, M.J.; Guazzelli, L.; Beltram, F.; Sorba, L.; Pennelli, G.; Rossella, F. Electrostatic Control of the Thermoelectric Figure of Merit in Ion-Gated Nanotransistors. Adv. Funct. Mater. 2021, 31, 2104175. [Google Scholar] [CrossRef]
- Rocci, M.; Demontis, V.; Prete, D.; Ercolani, D.; Sorba, L.; Beltram, F.; Pennelli, G.; Roddaro, S.; Rossella, F. Suspended InAs Nanowire-Based Devices for Thermal Conductivity Measurement Using the 3ω Method. J. Mater. Eng. Perform. 2018, 27, 6299–6305. [Google Scholar] [CrossRef]
- Rossella, F.; Pennelli, G.; Roddaro, S. Chapter Six—Measurement of the thermoelectric properties of individual nanostructures, Part of volume: Nanowires for Energy Applications, Edited by Sudha Mokkapati, Chennupati Jagadish. Semicond. Semimet. 2018, 98, 409–444. [Google Scholar]
- Biswas, K.; He, J.; Blum, I.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Peri, L.; Prete, D.; Demontis, V.; Zannier, V.; Rossi, F.; Sorba, L.; Beltram, F.; Rossella, F. Giant reduction of thermal conductivity in twinning superlattice InAsSb nanowires. Nano Energy 2022, 103, 107782. [Google Scholar] [CrossRef]
- Maldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater 2015, 14, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Datta, S.; Lundstrom, M. Thermal conductivity of bulk and thin-film silicon: A Landauer approach. J. Appl. Phys. 2012, 111, 93708. [Google Scholar] [CrossRef] [Green Version]
- DeCoster, M.E.; Chen, X.; Zhang, K.; Rost, C.M.; Hoglund, E.R.; Howe, J.M.; Beechem, T.E.; Baumgart, H.; Hopkins, P.E. Thermal Conductivity and Phonon Scattering Processes of ALD Grown PbTe–PbSe Thermoelectric Thin Films. Adv. Funct. Mater. 2019, 29, 1904073. [Google Scholar] [CrossRef]
- Latronico, G.; Singh, S.; Mele, P.; Darwish, A.; Sarkisov, S.; Pan, S.W.; Kawamura, Y.; Sekine, C.; Baba, T.; Mori, T.; et al. Synthesis and Characterization of Al-and SnO2-Doped ZnO Thermoelectric Thin Films. Materials 2021, 14, 6929. [Google Scholar] [CrossRef] [PubMed]
- Trinh, T.Q.; Nguyen, T.T.; Vu, D.V.; Le, D.H. Structural and thermoelectric properties of Al-doped ZnO thin films grown by chemical and physical methods. J Mater Sci. Mater Electron 2017, 28, 236–240. [Google Scholar] [CrossRef]
- Janotti, A.; Van de Walle, C.G. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 2009, 7, 126501. [Google Scholar] [CrossRef] [Green Version]
- Ozgur, U.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Dogan, S.; Cho, S.J.; Morkoc, H.J. A comprehensive review of ZnO materials and devices. Appl. Phys. 2005, 98, 041301. [Google Scholar]
- Xu, Y.; Goto, M.; Kato, R.; Tanaka, Y.; Kagawa, Y. Thermal conductivity of ZnO thin film produced by reactive sputtering. J. Appl. Phys. 2012, 111, 84320. [Google Scholar] [CrossRef]
- Ellmer, K.; Klein, A.; Rech, B. Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells; Springer Science & Business Media: Berlin, Germany, 2007; 29 dic. [Google Scholar]
- Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells. J. Appl. Phys. 2013, 113, 64508. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, G.; Liu, Q.; Duan, H. Recent progress in Zn-based anodes for advanced lithium ion batteries. Mater. Chem. Front. 2018, 2, 1414–1435. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, P.; Xu, J.; Xue, H.; Pang, H. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries. Nanoscale 2016, 8, 18578. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. SCIENCE 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Chubenko, E.; Alhamd, M.W.; Bondarenko, V. Optical properties of hydrothermally deposited Ni and Co doped nanostructured ZnO thin films as scintillating coatings for beta-particles detection. J. Lumin. 2022, 247, 118860. [Google Scholar] [CrossRef]
- Uklein, A.V.; Multian, V.V.; Kuz'micheva, G.M.; Linnik, R.P.; Lisnyak, V.V.; Popov, A.I.; Gayvoronsky, V.Y. Nonlinear optical response of bulk ZnO crystals with different content of intrinsic defects. Opt. Mater. 2018, 84, 738–747. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Singh, R.K. Progress on Transition Metal-Doped ZnO Nanoparticles and Its Application. Ind. Eng. Chem. Res. 2019, 58, 17130–17163. [Google Scholar] [CrossRef]
- Pan, Z.; Tian, X.; Wu, S.; Xiao, C.; Li, Z.; Deng, J.; Hu, G.; Wei, Z. Effects of Al and Sn dopants on the structural and optical properties of ZnO thin films. Superlattices Microstruct 2013, 54, 107–117. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, S.; Jindal, K.; Sharma, A.; Tomar, M. Enhanced Low Temperature Thermoelectric Properties by Nano-Inclusion of 2D MoS2 with Fe:ZnO Thin Films. J. Electron. Mater. 2021, 50, 4567–4576. [Google Scholar] [CrossRef]
- Patel, P.B.; Panchal, C.; Desai, M.S.; Ray, J. Magnetron Sputtered Al-ZnO Thin Films for Photovoltaic Applications. J. Nano- Electron. Phys. 2011, 3, 755. [Google Scholar]
- Pandey, R.K.; Mishra, S.; Bajpai, P.K. Deposition and Characterization of Al:ZnO Thin Films for Optoelectronic Applications. J. Electron. Mater. 2016, 45, 5822–5829. [Google Scholar] [CrossRef]
- Dasgupta, N.P.; Neubert, S.; Lee, W.; Trejo, O.; Lee, J.R.; Prinz, F.B. Atomic Layer Deposition of Al-doped ZnO Films: Effect of Grain Orientation on Conductivity. Chem. Mater. 2010, 22, 4769–4775. [Google Scholar] [CrossRef]
- Alam, M.W.; Ansari, M.Z.; Aamir, M.; Waheed-Ur-Rehman, M.; Parveen, N.; Ansari, S.A. Preparation and Characterization of Cu and Al Doped ZnO Thin Films for Solar Cell Applications. Crystals 2022, 12, 128. [Google Scholar] [CrossRef]
- Isotta, E.; Andrade-Arvizu, J.; Syafiq, U.; Jiménez-Arguijo, A.; Navarro-Güell, A.; Guc, M.; Saucedo, E.; Scardi, P. Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides. Adv. Funct. Mater. 2022, 32, 2202157. [Google Scholar] [CrossRef]
- Viet Vu, D.; Hai Le, D.; Xuan Nguyen, C.; Quang Trinh, T. Comparison of structural and electric properties of ZnO-based n-type thin films with different dopants for thermoelectric applications. J Sol-Gel Sci Technol 2019, 91, 146–153. [Google Scholar] [CrossRef]
- Valenti, I.; Benedetti, S.; di Bona, A.; Lollobrigida, V.; Perucchi, A.; Di Pietro, P.; Lupi, S.; Valeri, S.; Torelli, P. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range. J. Appl. Phys. 2015, 118, 165304. [Google Scholar] [CrossRef]
- Matsubara, K.; Fons, P.; Yamada, A.; Watanabe, M.; Niki, S. Epitaxial growth of ZnO thin films on LiNbO3 substrates. Thin Solid Film. 1999, 347, 238–240. [Google Scholar] [CrossRef]
- McMurdie, F.; Morris, M.C.; Evans, E.H.; Paretzkin, B.; Wong-Ng, W.; Ettlinger, L.; Hubbard, C.R. Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1986, 1, 76. [Google Scholar] [CrossRef]
- De Keijser, T.H.; Langford, J.I.; Mittemeijer, E.J.; Vogels, A.B.P. Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Cryst. 1982, 15, 308. [Google Scholar] [CrossRef]
- Delhez, R.; de Keijser, T.H.; Mittemeijer, E.J. Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis, Z. Anal. Chem. 1982, 312, 1–16. [Google Scholar] [CrossRef]
- Metzger, T.; Höpler, R.; Born, E.; Ambacher, O.; Stutzmann, M.; Stömmer, R.; Schuster, M.; Göbel, H.; Christiansen, S.; Albrecht, M.; et al. Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag. A 1998, 77, 1013–1025. [Google Scholar] [CrossRef]
- Chierchia, R.; Böttcher, T.; Heinke, H.; Einfeldt, S.; Figge, S.; Hommel, D. Microstructure of heteroepitaxial GaN revealed by x-ray diffraction. J. Appl. Phys. 2003, 93, 8918. [Google Scholar] [CrossRef]
- Galinetto, P.; Rossella, F.; Minzioni, P.; Razzari, L.; Cristiani, I.; Degiorgio, V.; Kokanyan, E.P. Microraman and photorefractivity study of hafnium-doped lithium niobate crystals. J. Nonlinear Opt. Phys. Mater. 2006, 15, 9–21. [Google Scholar] [CrossRef]
- Bellucci, S.; Chiaretti, M.; Onorato, P.; Rossella, F.; Grandi, M.S.; Galinetto, P.; Sacco, I.; Micciulla, F. Micro-Raman study of the role of sterilization on carbon nanotubes for biomedical applications. Nanomedicine 2010, 5, 209–215. [Google Scholar] [CrossRef]
- Caridad, J.M.; Rossella, F.; Bellani, V.; Grandi, M.S.; Diez, E. Automated detection and characterization of graphene and few-layer graphite via Raman spectroscopy. J. Raman Spectrosc. 2011, 42, 286–293. [Google Scholar] [CrossRef]
- Mehdipour, S.; López, D.; Velázquez, M.; Hidalgo, P.; Méndez, B.; Luna, M.; Bellani, V.; Amado, M.; Balakrishnan, G.; Diez, E. Raman response of topologically protected surface states in sub-micrometric Pb0.77Sn0.23Se flakes. J. Raman Spectr. 2020, 51, 2489. [Google Scholar] [CrossRef]
- Bocharov, D.; Chesnokov, A.; Chikvaidze, G.; Gabrusenoks, J.; Ignatans, R.; Kalendarev, R.; Krack, M.; Kundzins, K.; Kuzmin, A.; Mironova-Ulmane, N.; et al. A comprehensive study of structure and properties of nanocrystalline zinc peroxide. J. Phys. Chem. Solids 2022, 160, 110318. [Google Scholar] [CrossRef]
- Vinodkumar, R.; Navas, I.; Chalana, S.R.; Gopchandran, K.G.; Ganesan, V.; Philip, R.; Sudheer, S.K.; Pillai, V.M. Highly conductive and transparent laser ablated nanostructured Al: ZnO thin films. Appl. Surf. Sci. 2010, 257, 708–716. [Google Scholar] [CrossRef]
- Bundesmann, C.; Ashkenov, N.; Schubert, M.; Spemann, D.; Butz, T.; Kaidashev, E.M.; Lorenz, M.; Grundmann, M. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl. Phys. Lett. 2003, 83, 1974. [Google Scholar] [CrossRef]
- Van Toan, N.; Tuoi, T.T.K.; Inomata, N.; Toda, M.; Ono, T. Aluminum doped zinc oxide deposited by atomic layer deposition and its applications to micro/nano devices. Sci. Rep. 2021, 11, 120. [Google Scholar] [CrossRef]
- Sun, M.; Hao, W.; Wang, C.; Wang, T. A simple and green approach for preparation of ZnO2 and ZnO under sunlight irradiation. Chem. Phys. Lett. 2007, 443, 342–346. [Google Scholar] [CrossRef]
- Russo, V.; Ghidelli, M.; Gondoni, P.; Casari, C.S.; Li Bassi, A. Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide. J. Appl. Phys. 2014, 115, 73508. [Google Scholar] [CrossRef] [Green Version]
Sample Name | Al (at. %) | Al DC Power (W) |
---|---|---|
A, A’ | 2 | 20 |
B, B’ | 3 | 30 |
C, C’ | 4 | 40 |
D, D’ | 5 | 50 |
E, E’ | 8 | 60 |
Doping [%] | D-Spacing [A] | Lattice Parameter a [A] | Lattice Parameter c [A] | Vertical Coherence Length [nm] | Microstrain [× 10−3] |
---|---|---|---|---|---|
2 | 2.6877 | 3.2918 | 5.3754 | 59.638 | 5.9062 |
3 | 2.6872 | 3.2911 | 5.3743 | 46.739 | 5.9646 |
4 | 2.6884 | 3.2925 | 5.3767 | 31.778 | 5.4827 |
5 | 2.6851 | 3.2885 | 5.3701 | 24.386 | 5.4089 |
8 | 2.6855 | 3.2891 | 5.3711 | 11.145 | 7.9833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isram, M.; Magrin Maffei, R.; Demontis, V.; Martini, L.; Forti, S.; Coletti, C.; Bellani, V.; Mescola, A.; Paolicelli, G.; Rota, A.; et al. Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios. Coatings 2023, 13, 691. https://doi.org/10.3390/coatings13040691
Isram M, Magrin Maffei R, Demontis V, Martini L, Forti S, Coletti C, Bellani V, Mescola A, Paolicelli G, Rota A, et al. Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios. Coatings. 2023; 13(4):691. https://doi.org/10.3390/coatings13040691
Chicago/Turabian StyleIsram, Muhammad, Riccardo Magrin Maffei, Valeria Demontis, Leonardo Martini, Stiven Forti, Camilla Coletti, Vittorio Bellani, Andrea Mescola, Guido Paolicelli, Alberto Rota, and et al. 2023. "Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios" Coatings 13, no. 4: 691. https://doi.org/10.3390/coatings13040691
APA StyleIsram, M., Magrin Maffei, R., Demontis, V., Martini, L., Forti, S., Coletti, C., Bellani, V., Mescola, A., Paolicelli, G., Rota, A., Benedetti, S., Bona, A. d., Ribeiro, J. M., Tavares, C. J., & Rossella, F. (2023). Thermoelectric and Structural Properties of Sputtered AZO Thin Films with Varying Al Doping Ratios. Coatings, 13(4), 691. https://doi.org/10.3390/coatings13040691