The Tribological Behavior of TiN/TiC CVD Coatings under Dry Sliding Conditions against Zirconia and Steel Counterparts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Vickers Hardness Analysis
3.2. Tribological Analysis of the TiN/TiC Coatings
3.3. Surface Morphology and Roughness Analysis
3.4. Adhesion Test of the Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, R.; Pradhan, S.; Bathe, R.N. Design and Fabrication of Spiral Triangular Micro Texture on Chemical Vapor Deposition Coated Cutting Insert Using Femtosecond Laser Machine. Mater. Today Proc. 2020, 28, 1439–1444. [Google Scholar] [CrossRef]
- Martin, P.M. Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology; William Andrew: Norwich, NY, USA, 2009; ISBN 978-0-8155-2032-0. [Google Scholar]
- Gyurika, I.G.; Ali, O.I.; Jakab, M. Determination of Research Guidelines and Establishing of a Test Framework for the Development of New CVD Coating Formulations and New Approach Coating Equipment. In Proceedings of the Smart Technologies in Urban Engineering; Arsenyeva, O., Romanova, T., Sukhonos, M., Tsegelnyk, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 420–431. [Google Scholar]
- Jones, A.C.; Hitchman, M.L. Chemical Vapour Deposition: Precursors. Processes and Applications; Royal Society of Chemistry: London, UK, 2009; ISBN 978-0-85404-465-8. [Google Scholar]
- Aper, T.M.; Yam, F.K.; Beh, K.P. Influence of Temperature and Nickel Catalyst on the Structural and Optical Properties of Indium Oxide Nanostructured Films Synthesized by Chemical Vapor Deposition Technique. Mater. Sci. Semicond. Process. 2021, 132, 105925. [Google Scholar] [CrossRef]
- Bhaduri, B. Synthesis of Cu Catalyzed Chemical Vapor Deposition Grown Cu-CNFs on Less Porous Graphite Powder. Mater. Lett. 2021, 305, 130828. [Google Scholar] [CrossRef]
- Uhlmann, E.; Schröter, D. Process Behaviour of Micro-Textured CVD Diamond Thick Film Cutting Tools during Turning of Ti-6Al-4V. Procedia CIRP 2020, 87, 25–30. [Google Scholar] [CrossRef]
- Ma, Z.; Song, J.; Fan, H.; Hu, T.; Hu, L. Preparation and Study on Fretting Tribological Behavior of Composite Lubrication Structure on the Titanium Alloy Surface. Coatings 2022, 12, 332. [Google Scholar] [CrossRef]
- Shen, T.; Zhu, L.; Liu, Z. Effect of Micro-Blasting on the Tribological Properties of TiN/MT-TiCN/Al2O3/TiCNO Coatings Deposited by CVD. Int. J. Refract. Met. Hard Mater. 2020, 88, 105205. [Google Scholar] [CrossRef]
- Bai, H.; Zhong, L.; Kang, L.; Liu, J.; Zhuang, W.; Lv, Z.; Xu, Y. A Review on Wear-Resistant Coating with High Hardness and High Toughness on the Surface of Titanium Alloy. J. Alloys Compd. 2021, 882, 160645. [Google Scholar] [CrossRef]
- Jadhav, P.M.; Reddy, N.S.K. Analysis of Novel Nano-Composite Coating for Varied Combinations of YSZ1–x–y. TiNx. SiNy. Tribol. Trans. 2020, 63, 683–703. [Google Scholar] [CrossRef]
- Ruppi, S.; Larsson, A. Deposition. Microstructure. and Properties of Nanocrystalline Ti(C.O.N) Coatings. J. Vac. Sci. Technol. Vac. Surf. Films 2003, 21, 66–75. [Google Scholar] [CrossRef]
- Moura, C.; Cunha, L.; Chappé, J.M.; Vaz, F. Study on the Thermal Stability of Ti(C.O.N) Decorative Coatings. Plasma Process. Polym. 2009, 6, S755–S759. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Hu, T.; Leicht, P.; Liu, Y. Oxidation resistance and thermal stability of Ti(C.N) and Ti(C.N.O) coatings deposited by chemical vapor deposition. Int. J. Refract. Met. Hard Mater. 2016, 54, 295–303. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Wu, W.; Li, C.; Yu, C.H.; Tan, B.H. Deposition and characterization of Ti(C.N.O) coatings by unbalanced magnetron sputtering. Surf. Coat. Technol. 2003, 163–164, 233–237. [Google Scholar] [CrossRef]
- Kenzhegulov, A.; Mamaeva, A.; Panichkin, A.; Alibekov, Z.; Kshibekova, B.; Bakhytuly, N.; Wieleba, W. Comparative Study of Tribological and Corrosion Characteristics of TiCN. TiCrCN. and TiZrCN Coatings. Coatings 2022, 12, 564. [Google Scholar] [CrossRef]
- Zhu, M.; Achache, S.; Boulet, P.; Virfeu, A.; Pierson, J.-F.; Sanchette, F. Effects of Deposition Parameters on the Microstructure and Mechanical Properties of Ti(C.N) Produced by Moderate Temperature Chemical Vapor Deposition (MT-CVD) on Cemented Carbides. Vacuum 2022, 195, 110650. [Google Scholar] [CrossRef]
- Czettl, C.; Mitterer, C.; Mühle, U.; Rafaja, D.; Puchner, S.; Hutter, H.; Penoy, M.; Michotte, C.; Kathrein, M. CO Addition in Low-Pressure Chemical Vapour Deposition of Medium-Temperature TiCxN1-x Based Hard Coatings. Surf. Coat. Technol. 2011, 206, 1691–1697. [Google Scholar] [CrossRef]
- Azadi, M.; Rouhagdam, S.A.; Ahangarani, S.; Mofidi, H.H.; Valiei, M. Mechanical behaviour and properties of TiN/TiC coating using PACVD. Adv. Mater. Res. 2014, 829, 476–481. [Google Scholar] [CrossRef]
- Günen, A.; Soylu, B.; Karakas, Ö. Titanium carbide coating to improve surface characteristic, wear and corrosion resistance of spheroidal graphite cast irons. Surf. Coat. Technol. 2022, 437, 128280. [Google Scholar] [CrossRef]
- Kupstov, A.K.; Kiryukhantsev-Korneev, P.V.; Sheveyko, A.N.; Shtanksy, D.V. Comparative study of electrochemical and impact wear behaviour of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN coatings. Surf. Coat. Technol. 2013, 216, 273–281. [Google Scholar] [CrossRef]
- Lengauer, W. Transition Metal Carbides. Nitrides. and Carbonitrides. In Handbook of Ceramic Hard Materials; John Wiley & Sons. Ltd.: Hoboken, NJ, USA, 2000; pp. 202–252. ISBN 978-3-527-61821-7. [Google Scholar]
- Larsson, A.; Ruppi, S. Microstructure and Properties of Ti(C.N) Coatings Produced by Moderate Temperature Chemical Vapour Deposition. Thin Solid Films 2002, 402, 203–210. [Google Scholar] [CrossRef]
- Wagner, J.; Mitterer, C.; Penoy, M.; Michotte, C.; Wallgram, W.; Kathrein, M. Structure and Properties of CVD TiCxN1-x Coatings. In 16th International Plansee Seminar; Kneringer, G., Rödhammer, P., Wildner, H., Eds.; Plansee AG: Reutte, Austria, 2005; pp. 917–931. [Google Scholar]
- Hutchings, I.; Shipway, P. Tribology: Friction and Wear of Engineering Materials, 2nd ed.; Butterworth-Heinemann: Cambridge, MA, USA, 2017; ISBN 978-0-08-100910-9. [Google Scholar]
- Holmberg, K.; Matthews, A. Coatings Tribology: Properties. Mechanisms. Techniques and Applications in Surface Engineering, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands; Boston, MA, USA, 2009; ISBN 978-0-444-52750-9. [Google Scholar]
- Zhong, Z.Q.; Zhang, L.; Zhou, L.; Qiu, L.-C.; Shi, H.-D.; Yang, M.-L.; Zhu, J.-F. Cutting Performances and the Related Characteristics of CVD Coated Hardmetal Inserts Changed by Post-Treatments. Int. J. Refract. Met. Hard Mater. 2018, 70, 162–168. [Google Scholar] [CrossRef]
- Karaoglanli, A.C.; Caliskan, H.; Gok, M.S.; Erdogan, A.; Turk, A. A Comparative Study of the Microabrasion Wear Behavior of CoNiCrAlY Coatings Fabricated by APS. HVOF. and CGDS Techniques. Tribol. Trans. 2014, 57, 11–17. [Google Scholar] [CrossRef]
- Çalışkan, H.; Kurbanoğlu, C.; Panjan, P.; Čekada, M.; Kramar, D. Wear Behavior and Cutting Performance of Nanostructured Hard Coatings on Cemented Carbide Cutting Tools in Hard Milling. Tribol. Int. 2013, 62, 215–222. [Google Scholar] [CrossRef]
- Hooper, R.M.; Morgan, J.E. Wear processes in the diamond grinding of zirconia ceramics. Wear 1989, 130, 353–356. [Google Scholar] [CrossRef]
- Kim, H.; Kim, C.Y.; Kim, D.W.; Lee, I.S.; Lee, G.H.; Park, J.C.; Lee, S.J.; Lee, K.Y. Wear Performance of Self-Mating Contact Pairs of TiN and TiAlN Coatings on Orthopedic Grade Ti-6Al-4V. Biomed. Mater. Bristol Engl. 2010, 5, 044108. [Google Scholar] [CrossRef] [PubMed]
- Aihua, L.; Jianxin, D.; Haibing, C.; Yangyang, C.; Jun, Z. Friction and wear properties of TiN. TiAlN. AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 2012, 31, 82–88. [Google Scholar] [CrossRef]
- You, Q.; Xiong, J.; Li, H.; Guo, Z.; Fang, D.; Gou, S. Structure and mechanical behavior evaluation of CVD multilayer coatings deposited on Ti(C.N)-based cermets. Ceram. Int. 2022, 48, 13250–13259. [Google Scholar] [CrossRef]
- You, Q.; Xiong, J.; Li, H.; Guo, Z.; Huo, Y. Study on the Microstructure and High Temperature Friction and Wear Characteristics of Three CVD Coated Cermets. Int. J. Refract. Met. Hard Mater. 2021, 96, 105495. [Google Scholar] [CrossRef]
- Hsieh, J.H.; Tan, A.L.K.; Zeng, X.T. Oxidation and Wear Behaviors of Ti-Based Thin Films. Surf. Coat. Technol. 2006, 201, 4094–4098. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, J.K.; Kim, K.H. A comparative study on tribological behavior of TiN and TiAlN coatings prepared by arc ion plating technique. Surf. Coat. Technol. 2002, 161, 237–242. [Google Scholar] [CrossRef]
- Dekker, J.P.; van der Put, P.J.; Veringa, H.J.; Schoonman, J. A Kinetic Study of Titanium Nitride Chemical Vapor Deposition Using Nitrogen. Hydrogen. and Titanium Tetrachloride. J. Electrochem. Soc. 1994, 141, 787. [Google Scholar] [CrossRef]
- ASTM G99-05; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- ASTM G133-05; Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- Krbata, M.; Eckert, M.; Bartosova, L.; Barenyi, I.; Majerik, J.; Mikuš, P.; Rendkova, P. Dry Sliding Friction of Tool Steels and Their Comparison of Wear in Contact with ZrO2 and X46Cr13. Materials 2020, 13, 2359. [Google Scholar] [CrossRef] [PubMed]
Sample | Layers | Time (h) | Temperature (°C) | Pressure (mbar) | SLM H2 | SLM CH4 | SLM N2 | SLM TCl4 |
---|---|---|---|---|---|---|---|---|
A | TiN | 3.0 | 980 | 100 | 4.10 | 4.1 | 8.20 | |
TiC | 2.0 | 1000 | 80 | 9.24 | 1.0 | 8.22 | ||
B | TiN | 3.0 | 1020 | 50 | 3.50 | 4.5 | 8.00 | |
TiC | 2.0 | 1000 | 80 | 9.24 | 1.0 | 8.22 |
Layers Thickness (µm) | TiC | TiN | Total |
---|---|---|---|
A | 1.6 ± 0.1 | 3.2 ± 0.3 | 4.8 ± 0.3 |
B | 1.3 ± 0.1 | 1.6 ± 0.1 | 2.9 ± 0.2 |
Sample | Ti | N | C | W | Co | |
---|---|---|---|---|---|---|
Substrate | - | - | - | 78.0 ± 2.7 | 22.0 ± 1.3 | |
A | Layer 1 | 51.7 ± 5.5 | 48.3 ± 4.8 | - | - | - |
Layer 2 | 52.3 ± 4.3 | - | 45.6 ± 1.2 | - | 2.1 ± 0.2 | |
B | Layer 1 | 45.1 ± 4.0 | 54.9 ± 4.6 | - | - | - |
Layer 2 | 55.8 ± 4.6 | - | 44.2 ± 0.9 | - | - |
HV 0.2 | A | B | WC–Co |
---|---|---|---|
AV | 2461 | 2158 | 1895 |
SD | 327 | 313 | 791 |
Sample | D (mm) | h (mm) | VP (µm3) |
---|---|---|---|
Sample A against steel | 1.648 | 0.057 | 6.08 × 107 |
Sample A against ZrO2 | 0.397 | 0.003 | 1.85 × 105 |
Sample B against steel | 1.572 | 0.052 | 5.05 × 107 |
Sample B against ZrO2 | 0.363 | 0.003 | 1.55 × 105 |
Sample | Ra [µm] | Rz [µm] | Rp [µm] | Rp/Rz |
---|---|---|---|---|
Sample A | 0.19 | 1.74 | 0.84 | 0.48 |
Sample B | 0.15 | 1.65 | 0.81 | 0.49 |
Sample A against steel | 0.29 | 2.41 | 1.23 | 0.51 |
Sample A against ZrO2 | 0.42 | 2.58 | 1.37 | 0.53 |
Sample B against steel | 0.40 | 2.55 | 1.28 | 0.50 |
Sample B against ZrO2 | 0.35 | 3.06 | 1.57 | 0.51 |
Sample A against ZrO2 after 1550 m | 0.73 | 4.57 | 2.39 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakab, M.; Ali, O.I.; Gyurika, I.G.; Korim, T.; Telegdi, J. The Tribological Behavior of TiN/TiC CVD Coatings under Dry Sliding Conditions against Zirconia and Steel Counterparts. Coatings 2023, 13, 832. https://doi.org/10.3390/coatings13050832
Jakab M, Ali OI, Gyurika IG, Korim T, Telegdi J. The Tribological Behavior of TiN/TiC CVD Coatings under Dry Sliding Conditions against Zirconia and Steel Counterparts. Coatings. 2023; 13(5):832. https://doi.org/10.3390/coatings13050832
Chicago/Turabian StyleJakab, Miklós, Osamah Ihsan Ali, István Gábor Gyurika, Tamás Korim, and Judit Telegdi. 2023. "The Tribological Behavior of TiN/TiC CVD Coatings under Dry Sliding Conditions against Zirconia and Steel Counterparts" Coatings 13, no. 5: 832. https://doi.org/10.3390/coatings13050832
APA StyleJakab, M., Ali, O. I., Gyurika, I. G., Korim, T., & Telegdi, J. (2023). The Tribological Behavior of TiN/TiC CVD Coatings under Dry Sliding Conditions against Zirconia and Steel Counterparts. Coatings, 13(5), 832. https://doi.org/10.3390/coatings13050832