Study on the Construction of Dynamic Modulus Master Curve of Polyurethane Mixture with Dense Gradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methodology
2.2.1. Dynamic Modulus Fitting Model
2.2.2. Shift Factor Equation
2.3. Goodness–of–Fit Statistics
3. Results
3.1. Analyzing Master Curve Scale Type
3.2. Analyzing the Influence of the Solver Method on the Fitting of the Dynamic Modulus Master Curve
3.2.1. The SLS Model Fitting Results Analysis
3.2.2. The GLS Model Fitting Results Analyzing
3.2.3. The CAM Model Fitting Results Analysis
3.2.4. The Modified CAM Model Fitting Results Analysis
3.2.5. The SCM Model Fitting Results Analysis
3.3. Analyzing the Influence of Shift Factor Equation on the Fitting of Dynamic Modulus Master Curve
3.3.1. The SLS Model Fitting Results Analysis
3.3.2. The GLS Model Fitting Results Analysis
3.3.3. The CAM Model Fitting Results Analysis
3.3.4. The Modified CAM Model Fitting Results Analyzing
3.3.5. The SCM Model Fitting Results Analysis
3.4. Comparing Master Curves with Recommended Models and Shift Factor Equations
3.4.1. Comparing the WLF Shift Factor Equation Fitting Results
3.4.2. Comparing the Kaelble Shift Factor Equation Fitting Results
3.5. Comparing the Master Curves under Different Models
4. Discussion
4.1. Analyzing Master Curve Scale Type
4.2. Analyzing the Influence of the Solver Method on the Fitting of the Dynamic Modulus Master Curve
4.2.1. The SLS Model Fitting Results Analysis
4.2.2. The GLS Model Fitting Results Analysis
4.2.3. The CAM Model Fitting Results Analysis
4.2.4. The Modified CAM Model Fitting Results Analysis
4.2.5. The SCM Model Fitting Results Analyzing
4.3. Analyzing the Influence of Shift Factor Equation on the Fitting of Dynamic Modulus Master Curve
4.3.1. The SLS Model Fitting Results Analysis
4.3.2. The GLS Model Fitting Results Analysis
4.3.3. The CAM Model Fitting Results Analysis
4.3.4. The Modified CAM Model Fitting Results Analysis
4.3.5. The SCM Model Fitting Results Analyzing
4.4. Comparing Master Curves with Recommended Models and Shift Factor Equations
4.4.1. Comparing the WLF Shift Factor Equation Fitting Results
4.4.2. Comparing the Kaelble Shift Factor Equation Fitting Results
4.5. Comparing the Master Curves under Different Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, D. Analysis of creep data from indirect tension test on asphalt concrete. J. Assoc. Asph. Paving Technol. 1998, 67, 458–492. [Google Scholar]
- Lee, H.-J.; Kim, Y.R. Viscoelastic Constitutive Model for Asphalt Concrete under Cyclic Loading. J. Eng. Mech. 1998, 124, 32–40. [Google Scholar] [CrossRef]
- Gibson, N.H.; Schwartz, C.W.; Schapery, R.A.; Witczak, M.W. Viscoelastic, Viscoplastic, and Damage Modeling of Asphalt Concrete in Unconfined Compression. Transp. Res. Rec. J. Transp. Res. Board 2003, 1860, 3–15. [Google Scholar] [CrossRef]
- Diab, A.; You, Z.; Adhikari, S.; Li, X. Modeling shear stress response of bituminous materials under small and large strains. Constr. Build. Mater. 2020, 252, 119133. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Di Benedetto, H.; Sauzéat, C. Linear and nonlinear viscoelastic behaviour of bituminous mixtures. Mater. Struct. 2014, 48, 2339–2351. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.; Zhuang, W. The research for low-temperature rheological properties and structural characteristics of high-viscosity modified asphalt. J. Therm. Anal. Calorim. 2017, 131, 1025–1034. [Google Scholar] [CrossRef]
- Venudharan, V.; Biligiri, K.P.; Das, N.C. Investigations on behavioral characteristics of asphalt binder with crumb rubber modification: Rheological and thermo−chemical approach. Constr. Build. Mater. 2018, 181, 455–464. [Google Scholar] [CrossRef]
- Nemati, R.; Dave, E.V. Nominal property based predictive models for asphalt mixture complex modulus (dynamic modulus and phase angle). Constr. Build. Mater. 2018, 158, 308–319. [Google Scholar] [CrossRef]
- Podolsky, J.H.; Williams, R.C.; Cochran, E. Effect of corn and soybean oil derived additives on polymer-modified HMA and WMA master curve construction and dynamic modulus performance. Int. J. Pavement Res. Technol. 2018, 11, 541–552. [Google Scholar] [CrossRef]
- Badeli, S.; Carter, A.; Doré, G. Effect of laboratory compaction on the viscoelastic characteristics of an asphalt mix before and after rapid freeze-thaw cycles. Cold Reg. Sci. Technol. 2018, 146, 98–109. [Google Scholar] [CrossRef]
- Christensen, D.W.; Anderson, D.A. Interpretation of dynamic mechanical test data for paving grade asphalt cements (with discussion). J. Assoc. Asph. Paving Technol. 1992, 61, 67–116. [Google Scholar]
- Schwartz, C.W.; Gibson, N.; Schapery, R.A. Time-Temperature Superposition for Asphalt Concrete at Large Compressive Strains. Transp. Res. Rec. J. Transp. Res. Board 2002, 1789, 101–112. [Google Scholar] [CrossRef]
- Chehab, G.; Kim, Y.-R.; Schapery, R.; Witczak, M.W.; Bonaquist, R. Time-temperature superposition principle for asphalt concrete with growing damage in tension state. J. Assoc. Asph. Paving Technol. 2002, 71, 559–593. [Google Scholar]
- Witzcak, M.W. Simple Performance Test for Superpave Mix Design; Transportation Research Board: Washington, DC, USA, 2002; Volume 465. [Google Scholar]
- Airey, G.D. Use of black diagrams to identify inconsistencies in rheological data. Road Mater. Pavement Des. 2002, 3, 403–424. [Google Scholar] [CrossRef]
- Kim, Y.R.; Lee, Y.-C. Interrelationships among stiffnesses of asphalt aggregate mixtures. Asph. Paving Technol. 1995, 64, 575–610. [Google Scholar]
- Olard, F.; Di Benedetto, H. General “2S2P1D” Model and Relation Between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes. Road Mater. Pavement Des. 2011, 4, 185–224. [Google Scholar] [CrossRef]
- Pellinen, T.; Witczak, M.; Bonaquist, R. Asphalt Mix Master Curve Construction Using Sigmoidal Fitting Function with Non-Linear Least Squares Optimization. In Recent Advances in Materials Characterization and Modeling of Pavement Systems; Columbia University: New York, NY, USA, 2004; pp. 83–101. [Google Scholar]
- Sirin, O.; Paul, D.K.; Khan, M.S.; Kassem, E.; Darabi, M.K. Effect of Aging on Viscoelastic Properties of Asphalt Mixtures. J. Transp. Eng. Part B Pavements 2019, 145, 04019034. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Marasteanu, M.; Anderson, D. Improved model for bitumen rheological characterization. In Proceedings of the Eurobitume Workshop on Performance Related Properties for Bituminous Binders, Brussels, Belgium, May 1999. [Google Scholar]
- Havriliak, S.; Negami, S. A complex plane analysis of α-dispersions in some polymer systems. J. Polym. Sci. Part C Polym. Symp. 1966, 14, 99–117. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Mounier, D.; Marc-Stéphane, G.; Hainin, M.R.; Airey, G.D.; Di Benedetto, H. Modelling the rheological properties of bituminous binders using the 2S2P1D Model. Constr. Build. Mater. 2013, 38, 395–406. [Google Scholar] [CrossRef]
- Tanakizadeh, A.; Shafabakhsh, G. Viscoelastic characterization of aged asphalt mastics using typical performance grading tests and rheological-micromechanical models. Constr. Build. Mater. 2018, 188, 88–100. [Google Scholar] [CrossRef]
- Rowe, G.; Baumgardner, G.; Sharrock, M. A generalized logistic function to describe the master curve stiffness properties of binder mastics and mixtures. In Proceedings of the 45th Petersen Asphalt Research Conference, Laramie, WY, USA, 14–16 July 2008. [Google Scholar]
- Zhang, J.; Pei, J.; Wang, B. Research on time-temperature-stress equivalence principle for asphalt mixture. In Proceedings of the ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable, Beijing, China, 4–8 August 2010; pp. 3516–3523. [Google Scholar]
- Shook, J.; Kallas, B.; McLeod, N.; Finn, F.; Pell, P.; Krchma, L.; Haas, R.; Anderson, K. Factors influencing dynamic modulus of asphalt concrete. In Proceedings of the Association of Asphalt Paving Technologists, Washington, DC, USA, February 1969. [Google Scholar]
- Rowe, G.; Baumgardner, G.; Sharrock, M. Functional forms for master curve analysis of bituminous materials. In Advanced Testing and Characterization of Bituminous Materials, Two Volume set; CRC Press: Boca Raton, FL, USA, 2009; pp. 97–108. [Google Scholar]
- Zhang, F.; Wang, L.; Li, C.; Xing, Y. Predict the Phase Angle Master Curve and Study the Viscoelastic Properties of Warm Mix Crumb Rubber-Modified Asphalt Mixture. Materials 2020, 13, 5051. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E.J.; Witt, H.P. The Dynamic Shear Modulus of Paving Asphalts as a Function of Frequency. Trans. Soc. Rheol. 1974, 18, 591–606. [Google Scholar] [CrossRef]
- CholewiŃSka, M.; IwaŃSki, M.; Mazurek, G. The Impact of Ageing on the Bitumen Stiffness Modulus Using the Cam Model. Balt. J. Road Bridge Eng. 2018, 13, 34–39. [Google Scholar] [CrossRef]
- Falchetto, A.C.; Moon, K.H.; Wang, D.; Park, H.-W. A modified rheological model for the dynamic modulus of asphalt mixtures. Can. J. Civ. Eng. 2021, 48, 328–340. [Google Scholar] [CrossRef]
- Chen, H.; Barbieri, D.M.; Zhang, X.; Hoff, I. Reliability of Calculation of Dynamic Modulus for Asphalt Mixtures Using Different Master Curve Models and Shift Factor Equations. Materials 2022, 15, 4325. [Google Scholar] [CrossRef] [PubMed]
- Forough, S.A.; Moghadas Nejad, F.; Khodaii, A. An investigation of different fitting functions to accurately model the compressive relaxation modulus master curve of asphalt mixes. Road Mater. Pavement Des. 2015, 16, 767–783. [Google Scholar] [CrossRef]
- Su, N.; Xiao, F.; Wang, J.; Amirkhanian, S. Precision Analysis of Sigmoidal Master Curve Model for Dynamic Modulus of Asphalt Mixtures. J. Mater. Civ. Eng. 2018, 30, 04018290. [Google Scholar] [CrossRef]
- Lachance-Tremblay, É.; Vaillancourt, M.; Perraton, D.; Di Benedetto, H. Linear viscoelastic (LVE) properties of asphalt mixtures with different glass aggregates and hydrated lime content. Int. J. Pavement Eng. 2020, 21, 1170–1179. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Airey, G.D.; Hainin, M.R. Predictability of Complex Modulus Using Rheological Models. Asian J. Sci. Res. 2009, 3, 18–30. [Google Scholar] [CrossRef]
- Zbiciak, A.; Michalczyk, R. Characterization of the Complex Moduli for Asphalt-aggregate Mixtures at Various Temperatures. Procedia Eng. 2014, 91, 118–123. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, W.; Lv, J.; Ma, X.; Yan, J. Unified Construction of Dynamic Rheological Master Curve of Asphalts and Asphalt Mixtures. Int. J. Civ. Eng. 2017, 16, 1057–1067. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Forson, K.; Zhang, J.; Zhang, C.; Chen, J.; Xu, N.; Wang, Y. Affecting analysis of the rheological characteristic and reservoir damage of CO2 fracturing fluid in low permeability shale reservoir. Environ. Sci. Pollut. Res. 2022, 29, 37815–37826. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, J. Factors affecting the lower limit of the safe mud weight window for drilling operation in hydrate-bearing sediments in the Northern South China Sea. Geomech. Geophys. Geo Energy Geo Resour. 2022, 8, 82. [Google Scholar] [CrossRef]
- Song, X.; Zeng, M.; Fan, L. Relationship among dynamic properties of pavement asphalt materials. J. Build. Mater 2018, 21, 920–925. [Google Scholar]
- Nobakht, M.; Sakhaeifar, M.S. Dynamic modulus and phase angle prediction of laboratory aged asphalt mixtures. Constr. Build. Mater. 2018, 190, 740–751. [Google Scholar] [CrossRef]
- Rahman, A.S.M.A.; Tarefder, R.A. Dynamic modulus and phase angle of warm-mix versus hot-mix asphalt concrete. Constr. Build. Mater. 2016, 126, 434–441. [Google Scholar] [CrossRef]
- Kassem, H.; Chehab, G.; Najjar, S. Effect of Asphalt Mixture Components on the Uncertainty in Dynamic Modulus Mastercurves. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 135–148. [Google Scholar] [CrossRef]
- Primusz, P.; Toth, C. Use of the Modified Ramberg-Osgood Material Model to Predict Dynamic Modulus Master Curves of Asphalt Mixtures. Materials 2023, 16, 531. [Google Scholar] [CrossRef]
- You, Z.; Goh, S.W.; Dong, J. Predictive models for dynamic modulus using weighted least square nonlinear multiple regression model. Can. J. Civ. Eng. 2012, 39, 589–597. [Google Scholar] [CrossRef]
- Yang, X.; You, Z. New Predictive Equations for Dynamic Modulus and Phase Angle Using a Nonlinear Least-Squares Regression Model. J. Mater. Civ. Eng. 2015, 27, 04014131. [Google Scholar] [CrossRef]
- Corrales-Azofeifa, J.P.; Archilla, A.R. Dynamic modulus model of hot mix asphalt: Statistical analysis using joint estimation and mixed effects. J. Infrastruct. Syst. 2018, 24, 04018012. [Google Scholar] [CrossRef]
- Hilal, M.M.; Fattah, M.Y. Evaluation of Resilient Modulus and Rutting for Warm Asphalt Mixtures: A Local Study in Iraq. Appl. Sci. 2022, 12, 12841. [Google Scholar] [CrossRef]
- Kadhim, A.J.; Fattah, M.Y.; Asmael, N.M. Evaluation of the moisture damage of warm asphalt mixtures. Innov. Infrastruct. Solut. 2020, 5, 54. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Lu, J.; Ding, M.; Chen, Y. Synthesis and properties of Poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022, 108, 107516. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Y.; Ding, M.; Fan, X.; Hu, J.; Chen, Y.; Li, J.; Li, Z.; Liu, W. A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr. Polym. 2022, 277, 118871. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Lv, R.; Wu, J.; Qi, H. Viscoelastic mechanical performance of dense polyurethane mixtures based on dynamic and static modulus testing and creep testing. Constr. Build. Mater. 2022, 320, 126207. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, W.; Cui, S.; Ma, S.; Miao, B.; Di, E.; Wang, X.; Su, C.; Wei, J.; Liu, S. Study on the Influence Factors of Dynamic Modulus and Phase Angle of Dense Gradation Polyurethane Mixture. Coatings 2023, 13, 474. [Google Scholar] [CrossRef]
- El-Badawy, S.; Abd El-Hakim, R.; Awed, A. Comparing artificial neural networks with regression models for hot-mix asphalt dynamic modulus prediction. J. Mater. Civ. Eng. 2018, 30, 04018128. [Google Scholar] [CrossRef]
- Yang, R.C.; Kozak, A.; Smith, J.H.G. The potential of Weibull-type functions as flexible growth curves. Can. J. For. Res. 1978, 8, 424–431. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Marateanu, M.; Anderson, D. Time-temperature dependency of asphalt binders—An improved model (with discussion). J. Assoc. Asph. Paving Technol. 1996, 65, 408–448. [Google Scholar]
- Zeng, M.; Bahia, H.U.; Zhai, H.; Anderson, M.R.; Turner, P. Rheological modeling of modified asphalt binders and mixtures (with discussion). J. Assoc. Asph. Paving Technol. 2001, 70, 403–441. [Google Scholar]
- Fan, B.; Kazmer, D.O. Low-temperature modeling of the time-temperature shift factor for polycarbonate. Adv. Polym. Technol. 2005, 24, 278–287. [Google Scholar] [CrossRef]
- Hutcheson, S.A.; McKenna, G.B. The measurement of mechanical properties of glycerol, m-toluidine, and sucrose benzoate under consideration of corrected rheometer compliance: An in-depth study and review. J. Chem. Phys. 2008, 129, 074502. [Google Scholar] [CrossRef] [PubMed]
- Vestena, P.M.; Schuster, S.L.; Borges de Almeida Jr, P.O.; Faccin, C.; Specht, L.P.; Pereira, D.d.S. Dynamic modulus master curve construction of asphalt mixtures: Error analysis in different models and field scenarios. Constr. Build. Mater. 2021, 301, 124343. [Google Scholar] [CrossRef]
- Oshone, M.; Dave, E.; Daniel, J.S.; Rowe, G.M. Prediction of phase angles from dynamic modulus data and implications for cracking performance evaluation. Road Mater. Pavement Des. 2017, 18, 491–513. [Google Scholar] [CrossRef]
- Rahman, A.S.M.A.; Tarefder, R.A. Viscosity-Based Complex Modulus and Phase-Angle Predictive Models for the Superpave Asphalt Mixtures of New Mexico. J. Mater. Civ. Eng. 2018, 30, 04018019. [Google Scholar] [CrossRef]
- Ceylan, H.; Schwartz, C.W.; Kim, S.; Gopalakrishnan, K. Accuracy of predictive models for dynamic modulus of hot-mix asphalt. J. Mater. Civ. Eng. 2009, 21, 286–293. [Google Scholar] [CrossRef]
- Singh, D.; Zaman, M.; Commuri, S. Evaluation of predictive models for estimating dynamic modulus of hot-mix asphalt in Oklahoma. Transp. Res. Rec. 2011, 2210, 57–72. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Jakarni, F.M.; Nguyen, V.H.; Hainin, M.R.; Airey, G.D. Modelling the rheological properties of bituminous binders using mathematical equations. Constr. Build. Mater. 2013, 40, 174–188. [Google Scholar] [CrossRef]
- Booij, H.C.; Thoone, G.P.J.M. Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities. Rheol. Acta 1982, 21, 15–24. [Google Scholar] [CrossRef]
- Medani, T.; Huurman, M. Constructing the Stiffness Master Curves for Asphaltic Mixes; Delft University of Technology: Delft, The Netherlands, 2003. [Google Scholar]
- Nyamuhokya, T.P.; Romanoschi, S.; Hu, X.; Abdullah, A.; Walubita, L.F. Preliminary investigation of the relationship between HMA compressive and tensile dynamic modulus. Constr. Build. Mater. 2016, 128, 461–470. [Google Scholar] [CrossRef]
- Zhang, J.; Bao, L. Determination of asphalt mixture’s viscoelastic constitutive parameters for pavement response analysis using dynamic modulus transformation. Constr. Build. Mater. 2022, 315, 125729. [Google Scholar] [CrossRef]
- Xiao, L.; Liang, N.; Chen, L. Dynamic modulus and time-temperature equivalence equation of asphalt concrete. J. Chang. Univ. (Nat. Sci. Ed.) 2014, 34, 35–40. [Google Scholar]
- Guo, L.; Xu, Q.; Zeng, G.; Wu, W.; Zhou, M.; Yan, X.; Zhang, X.; Wei, J. Comparative Study on Complex Modulus and Dynamic Modulus of High-Modulus Asphalt Mixture. Coatings 2021, 11, 1502. [Google Scholar] [CrossRef]
- Shijie, M.; Liang, F.; Tao, M.; Zhao, D.; Yuzhen, Z.; Xiaomeng, Z. Dynamic Characteristic Master Curve and Parameters of Different Asphalt Mixtures. Appl. Sci. 2022, 12, 3619. [Google Scholar] [CrossRef]
Model | Fitting Equation | R2 | SSR |
---|---|---|---|
SLS | Y = 1.22209 × X − 0.89234 | 0.97731 | 0.02109 |
GLS | Y = 0.99342 × X + 0.02578 | 0.99099 | 0.00546 |
CAM | Y = 0.99358 × X + 0.02529 | 0.98791 | 0.00735 |
Modified CAM | Y = 0.97923 × X + 0.08122 | 0.9821 | 0.01063 |
SCM | Y = 0.99285 × X + 0.02817 | 0.99103 | 0.00543 |
Model | Fitting Equation | R2 | SSR |
---|---|---|---|
SLS | Y = 0.99894 × X + 0.00113 | 0.98073 | 0.01193 |
GLS | Y = 0.98504 × X + 0.05867 | 0.98511 | 0.00892 |
CAM | Y = 0.98472 × X + 0.05988 | 0.98347 | 0.00992 |
Modified CAM | Y = 0.98568 × X + 0.05642 | 0.98459 | 0.00925 |
SCM | Y = 0.98597 × X + 0.055 | 0.98534 | 0.0088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Gao, W.; Cui, S.; Zhang, W.; Ma, S.; Miao, B.; Su, C.; Wei, J.; Liu, S.; Liu, F. Study on the Construction of Dynamic Modulus Master Curve of Polyurethane Mixture with Dense Gradation. Coatings 2023, 13, 835. https://doi.org/10.3390/coatings13050835
Zhao H, Gao W, Cui S, Zhang W, Ma S, Miao B, Su C, Wei J, Liu S, Liu F. Study on the Construction of Dynamic Modulus Master Curve of Polyurethane Mixture with Dense Gradation. Coatings. 2023; 13(5):835. https://doi.org/10.3390/coatings13050835
Chicago/Turabian StyleZhao, Haisheng, Wenbin Gao, Shiping Cui, Wensheng Zhang, Shijie Ma, Baoji Miao, Chunhua Su, Jincheng Wei, Shan Liu, and Fuxiu Liu. 2023. "Study on the Construction of Dynamic Modulus Master Curve of Polyurethane Mixture with Dense Gradation" Coatings 13, no. 5: 835. https://doi.org/10.3390/coatings13050835
APA StyleZhao, H., Gao, W., Cui, S., Zhang, W., Ma, S., Miao, B., Su, C., Wei, J., Liu, S., & Liu, F. (2023). Study on the Construction of Dynamic Modulus Master Curve of Polyurethane Mixture with Dense Gradation. Coatings, 13(5), 835. https://doi.org/10.3390/coatings13050835