Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel–Metal Hydride Batteries: A Review
Abstract
:1. Introduction
2. Surface Modification of Magnesium-Based Materials
2.1. Surface Modifications of Hydrogen Storage Material
2.1.1. Surface Catalytic Treatment
2.1.2. Nanocrystallization Treatment
2.1.3. Core–Shell Structure
2.2. Surface Modifications of Electrode Materials in Nickel–Metal Hydride Batteries
2.2.1. Surface Coating
2.2.2. Nanocrystallization and Amorphization
2.2.3. Surface Catalytic Treatment
2.3. Analysis of the Application of Magnesium-Based Materials in Existing Fields
3. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef]
- Li, K.; Bian, H.; Liu, C.; Zhang, D.; Yang, Y. Comparison of geothermal with solar and wind power generation systems. Renew. Sustain. Energy Rev. 2015, 42, 1464–1474. [Google Scholar] [CrossRef]
- Khojasteh, D.; Khojasteh, D.; Kamali, R.; Beyene, A.; Iglesias, G. Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy. Renew. Sustain. Energy Rev. 2018, 81, 2992–3005. [Google Scholar] [CrossRef]
- Hussain, A.; Arif, S.M.; Aslam, M. Emerging renewable and sustainable energy technologies: State of the art. Renew. Sustain. Energy Rev. 2017, 71, 12–28. [Google Scholar] [CrossRef]
- Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P.H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327. [Google Scholar] [CrossRef]
- Rosen, M.A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy Ecol. Environ. 2016, 1, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Pearson, P.J.G.; Foxon, T.J. A low carbon industrial revolution? Insights and challenges from past technological and economic transformations. Energy Policy 2012, 50, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Niu, M.; Maddy, J. The survey of key technologies in hydrogen energy storage. Int. J. Hydrogen Energy 2016, 41, 14535–14552. [Google Scholar] [CrossRef]
- Liu, C.; Li, F.; Ma, L.P.; Cheng, H.M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62. [Google Scholar] [CrossRef]
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems–Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Saktisahdan, T.J.; Jannifar, A.; Hasan, M.H.; Matseelar, H.S.C. A review of available methods and development on energy storage; technology update. Renew. Sustain. Energy Rev. 2014, 33, 532–545. [Google Scholar] [CrossRef]
- Song, Z.; Zhan, H.; Zhou, Y. Polyimides: Promising energy-storage materials. Angew. Chem. Int. Ed. 2010, 49, 8444–8448. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, H.C.; Yu, F.; Zhao, X.S.; Wang, H. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019, 16, 545–573. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, B.; Shao, H.; Li, W.; Lin, H. Catalysis and downsizing in Mg-Based hydrogen storage materials. Catalysts 2018, 8, 89. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Li, J.; Shao, H.; He, L. Mg-based hydrogen absorbing materials for thermal energy storage—A Review. Appl. Sci. 2018, 8, 1375. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Xin, G.; Zheng, J.; Li, X.; Akiba, E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy 2012, 1, 590–601. [Google Scholar] [CrossRef]
- Zaluska, A.; Zaluski, L.; Ström–Olsen, J.O. Nanocrystalline magnesium for hydrogen storage. J. Alloy. Compd. 1999, 288, 217–225. [Google Scholar] [CrossRef]
- Huot, J.; Liang, G.; Boily, S.; Van Neste, A.; Schulz, R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloy. Compd. 1999, 293, 495–500. [Google Scholar] [CrossRef]
- Jerkiewicz, G. Hydrogen sorption ATIN electrodes. Prog. Surf. Sci. 1998, 57, 137–186. [Google Scholar] [CrossRef]
- Züttel, A.; Güther, V.; Otto, A.; Bartsch, M.; Kotz, R.; Chartouni, D.; Nutzenadel, C.; Schlapbach, L. About the mechanism and the rate limiting step of the metalhydride electrode reaction. J. Alloy. Compd. 1999, 293–295, 663–669. [Google Scholar] [CrossRef]
- Tliha, M.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A. AB5-type hydrogen storage alloy used as anodic materials in Ni-MH batteries. J. Alloy. Compd. 2007, 436, 221–225. [Google Scholar] [CrossRef]
- Cui, N.; Luo, J.L.; Chuang, K.T. Nickel–metal hydride (Ni-MH) battery using Mg2Ni-type hydrogen storage alloy. J. Alloy. Compd. 2000, 302, 218–226. [Google Scholar] [CrossRef]
- Xiong, W.; Yan, H.; Wang, L.; Verbetsky, V.; Zhao, X.; Mitrokhin, S.; Li, B.; Li, J.; Wang, Y. Characteristics of A2B7-type LaYNi-based hydrogen storage alloys modified by partially substituting Ni with Mn. Int. J. Hydrogen Energy 2017, 42, 10131–10141. [Google Scholar] [CrossRef]
- Wang, C.; Soriaga, M.P.; Srinivasan, S. Determination of reaction resistances for metal-hydride electrodes during anodic polarization. J. Power Sources 2000, 85, 212–223. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Tian, X.; Liu, Y.; Li, X. New approaches for rare earth-magnesium based hydrogen storage alloys. Prog. Nat. Sci. Mater. Int. 2017, 27, 50–57. [Google Scholar] [CrossRef]
- Wei, T.Y.; Lim, K.L.; Tseng, Y.S.; Chan, S.L.I. A review on the characterization of hydrogen in hydrogen storage materials. Renew. Sustain. Energy Rev. 2017, 79, 1122–1133. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, W.; Wang, F.; Ding, C.; Xu, S.; Yu, R. Effects of surface coating with Cu–Pd on electrochemical properties of A2B7-type hydrogen storage alloy. Int. J. Hydrogen Energy 2018, 43, 3244–3252. [Google Scholar] [CrossRef]
- Shen, W.; Han, S.; Li, Y.; Yang, J.; Xiao, K. Electrochemical performance of polyaniline electroless deposited La–Mg–Ni-based hydrogen storage alloys. Mater. Chem. Phys. 2012, 132, 852–857. [Google Scholar] [CrossRef]
- House, S.D.; Vajo, J.J.; Ren, C.; Rockett, A.A.; Robertson, I.M. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials. Acta Mater. 2015, 86, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.Z.; Cao, Z.J.; Li, L.L.; Wang, H.; Liu, J.W.; Min, D.; Chen, Y.W.; Xiao, F.M.; Tang, R.H.; Zhu, M. Enhanced high-rate discharge properties of La11.3Mg6.0Sm7.4Ni61.0 Co7.2Al7.1 with added graphene synthesized by plasma milling. Int. J. Hydrogen Energy 2014, 39, 12765–12772. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, J.; Zhang, H.; Qi, X.; Bian, Y.; Zhao, H. First-principles calculation of hydrogen adsorption and diffusion on Mn-doped Mg2Ni (010) surfaces. Appl. Surf. Sci. 2017, 425, 148–155. [Google Scholar] [CrossRef]
- Li, Q.; Lu, Y.; Luo, Q.; Yang, X.; Yang, Y.; Tan, J.; Dong, Z.; Dang, J.; Li, J.; Chen, Y.; et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J. Magnes. Alloy. 2021, 9, 1922–1941. [Google Scholar] [CrossRef]
- Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, C.G.S.; Majumder, C. Dissociation and diffusion of hydrogen on the Mg (0001) surface: Catalytic effect of V and Ni double substitution. J. Phys. Chem. C 2009, 113, 10574–10579. [Google Scholar] [CrossRef]
- Martino, P.; Chiesa, M.; Cristina Paganini, M.; Giamello, E. Coadsorption of NO and H2 at the surface of MgO monitored by EPR spectroscopy. Towards a site specific discrimination of polycrystalline oxide surfaces. Surf. Sci. 2003, 527, 80–88. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Huang, L.; Gao, M.; Pan, H. Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J. Alloy. Compd. 2011, 509, 675–686. [Google Scholar] [CrossRef]
- Feng, F.; Geng, M.; Northwood, D.O. Electrochemical behaviour of intermetallic-based metal hydrides used in Ni/metal hydride (MH) batteries: A review. Int. J. Hydrogen Energy 2001, 26, 725–734. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, Y.; Ma, L.; Wang, L.; Yang, M.; Shen, X. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int. J. Hydrogen Energy 2008, 33, 6727–6733. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, C.; Zhu, J.; Li, L. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys. J. Alloy. Compd. 2011, 509, 5309–5314. [Google Scholar] [CrossRef]
- Zhu, M.; Lu, Y.; Ouyang, L.; Wang, H. Thermodynamic tuning of Mg-based hydrogen storage alloys: A Review. Materials 2013, 6, 4654–4674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Li, J.; Li, B.; Liu, B.; Shao, H.; Li, Q. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism. J. Magnes. Alloy. 2019, 7, 58–71. [Google Scholar] [CrossRef]
- Arboleda, J.N.B.; Kasai, H.; Nobuhara, K.; Diño, W.A.; Nakanishi, H. Dissociation and Sticking of H2 on Mg(0001), Ti(0001) and La(0001) Surfaces. J. Phys. Soc. Jpn. 2004, 73, 745–748. [Google Scholar] [CrossRef]
- Bérubé, V.; Radtke, G.; Dresselhaus, M.; Chen, G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int. J. Energy Res. 2007, 31, 637–663. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamaridarkrim, F.; Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.F.; Ares-Fernández, J.R. Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci. 2010, 3, 526–543. [Google Scholar] [CrossRef]
- Floriano, R.; Deledda, S.; Hauback, B.C.; Leiva, D.R.; Botta, W.J. Iron and niobium based additives in magnesium hydride: Microstructure and hydrogen storage properties. Int. J. Hydrogen Energy 2017, 42, 6810–6819. [Google Scholar] [CrossRef]
- Mirabile Gattia, D.; Jangir, M.; Jain, I.P. Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications. J. Alloy. Compd. 2019, 801, 188–191. [Google Scholar] [CrossRef]
- Aurora, A.; Mancini, M.R.; Gattia, D.M.; Montone, A.; Pilloni, L.; Todini, E.; Antisari, M.V. Microstructural and kinetic investigation of hydrogen sorption reaction of MgH2/Nb2O5 nanopowders. Mater. Manuf. Process. 2009, 24, 1058–1063. [Google Scholar] [CrossRef]
- Crivello, J.C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; de Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of magnesium hydride-based materials: Development and optimisation. Appl. Phys. A. 2016, 122, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Bennici, S.; Auroux, A. Hydrogen storage and release: Kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. Int. J. Hydrogen Energy 2014, 39, 11633–11641. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr. Mater. 2003, 49, 213–217. [Google Scholar] [CrossRef]
- Özkar, S.; Finke, R.G. Nanocluster formation and stabilization fundamental studies: Ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. J. Am. Chem. Soc. 2002, 124, 5796–5810. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, Q.; Wang, P.; Wang, Y.; Wan, H. Characterizations of cobalt oxide nanoparticles within faujasite zeolites and the formation of metallic cobalt. Chem. Mater. 2004, 16, 1967–1976. [Google Scholar] [CrossRef]
- Aiken III, J.D.; Finke, R.G. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A Chem. 1999, 145, 1–44. [Google Scholar] [CrossRef]
- Özkar, S. Enhancement of catalytic activity by increasing surface area in heterogeneous catalysis. Appl. Surf. Sci. 2009, 256, 1272–1277. [Google Scholar] [CrossRef]
- Gross, A.F.; Ahn, C.C.; Van Atta, S.L.; Liu, P.; Vajo, J.J. Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology 2009, 20, 204005. [Google Scholar] [CrossRef]
- Paskevicius, M.; Tian, H.-Y.; Sheppard, D.A.; Webb, C.J.; Pitt, M.P.; Gray, E.M.; Kirby, N.M.; Buckley, C.E. Magnesium hydride formation within carbon aerogel. J. Phys. Chem. C 2011, 115, 1757–1766. [Google Scholar] [CrossRef]
- Adelhelm, P.; de Jongh, P.E. The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J. Mater. Chem. 2011, 21, 2417–2427. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, S.; Kariper, İ.A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038. [Google Scholar] [CrossRef]
- Liu, G.; Wang, Y.; Qiu, F.; Li, L.; Jiao, L.; Yuan, H. Synthesis of porous Ni@rGO nanocomposite and its synergetic effect on hydrogen sorption properties of MgH2. J. Mater. Chem. 2012, 22, 22542. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, X.; Zhao, S.; Saremi-Yarahmadi, S.; Chen, M.; Zheng, J.; Li, S.; Chen, L. ZIF-67 derived Co@CNTs nanoparticles: Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism. Int. J. Hydrogen Energy 2019, 44, 1059–1069. [Google Scholar] [CrossRef]
- Hudson, M.S.L.; Takahashi, K.; Ramesh, A.; Awasthi, S.; Ghosh, A.K.; Ravindran, P.; Srivastava, O.N. Graphene decorated with Fe nanoclusters for improving the hydrogen sorption kinetics of MgH2-experimental and theoretical evidence. Catal. Sci. Technol. 2016, 6, 261–268. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Pandey, S.K.; Vishwakarma, A.K.; Singh, S.; Shukla, V.; Soni, P.K.; Shaz, M.A.; Srivastava, O.N. Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg. J. Mater. Chem. A 2016, 4, 14761–14772. [Google Scholar] [CrossRef]
- Xie, X.; Chen, M.; Liu, P.; Shang, J.; Liu, T. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene. J. Power Sources 2017, 371, 112–118. [Google Scholar] [CrossRef]
- Wang, S.; Gao, M.; Yao, Z.; Xian, K.; Wu, M.; Liu, Y.; Sun, W.; Pan, H. High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH2. J. Magnes. Alloy. 2022, 10, 3354–3366. [Google Scholar] [CrossRef]
- Ma, Z.; Tang, Q.; Ni, J.; Zhu, Y.; Zhang, Y.; Li, H.-W.; Zhang, J.; Liu, Y.; Ba, Z.; Li, L. Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4. Chem. Eng. J. 2022, 433, 134489. [Google Scholar] [CrossRef]
- Wang, L.; Quadir, M.Z.; Aguey-Zinsou, K.-F. Ni coated LiH nanoparticles for reversible hydrogen storage. Int. J. Hydrogen Energy 2016, 41, 6376–6386. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, C.; Lai, Q.; Liu, W.; Wang, D.-W.; Aguey-Zinsou, K.-F. Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Mater. 2018, 10, 168–198. [Google Scholar] [CrossRef]
- Norberg, N.S.; Arthur, T.S.; Fredrick, S.J.; Prieto, A.L. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 2011, 133, 10679–10681. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Ström-Olsen, J.O. Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J. Alloy. Compd. 1995, 217, 245–249. [Google Scholar] [CrossRef]
- Shao, H.; Asano, K.; Enoki, H.; Akiba, E. Fabrication, hydrogen storage properties and mechanistic study of nanostructured Mg50Co50 body-centered cubic alloy. Scr. Mater. 2009, 60, 818–821. [Google Scholar] [CrossRef]
- Shao, H.; Matsuda, J.; Li, H.-W.; Akiba, E.; Jain, A.; Ichikawa, T.; Kojima, Y. Phase and morphology evolution study of ball milled Mg–Co hydrogen storage alloys. Int. J. Hydrogen Energy 2013, 38, 7070–7076. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, X.; Zhang, W.; Yuan, Z.; Gao, J.; Qi, Y.; Ren, H. Effect of milling duration on hydrogen storage thermodynamics and kinetics of Mg-based alloy. Int. J. Hydrogen Energy 2020, 45, 33832–33845. [Google Scholar] [CrossRef]
- Chen, J.; Takeshita, H.T.; Chartouni, D.; Kuriyama, N.; Sakai, T. Synthesis and characterization of nanocrystalline Mg2CoH5 obtained by mechanical alloying. J. Mater. Sci. 2001, 36, 5829–5834. [Google Scholar] [CrossRef]
- Herrich, M.; Ismail, N.; Lyubina, J.; Handstein, A.; Pratt, A.; Gutfleisch, O. Synthesis and decomposition of Mg2FeH6 prepared by reactive milling. Mater. Sci. Eng. B 2004, 108, 28–32. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Ma, H.; Chen, J. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption. J. Am. Chem. Soc. 2007, 129, 6710–6711. [Google Scholar] [CrossRef]
- Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L. Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates. Mater. Res. Express 2014, 2, 2015007. [Google Scholar] [CrossRef]
- Choi, Y.J.; Choi, J.W.; Sohn, H.Y.; Ryu, T.; Hwang, K.S.; Fang, Z.Z. Chemical vapor synthesis of Mg–Ti nanopowder mixture as a hydrogen storage material. Int. J. Hydrogen Energy 2009, 34, 7700–7706. [Google Scholar] [CrossRef]
- Nielsen, T.K.; Manickam, K.; Hirscher, M.; Besenbacher, F.; Jensen, T.R. Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano 2009, 3, 3521–3528. [Google Scholar] [CrossRef]
- Au, Y.S.; Obbink, M.K.; Srinivasan, S.; Magusin, P.C.M.M.; de Jong, K.P.; de Jongh, P.E. The size dependence of hydrogen mobility and sorption kinetics for carbon-supported MgH2 particles. Adv. Funct. Mater. 2014, 24, 3604–3611. [Google Scholar] [CrossRef]
- Zlotea, C.; Chevalier-Cesar, C.; Leonel, E.; Leroy, E.; Cuevas, F.; Dibandjo, P.; Vix-Guterl, C.; Martens, T.; Latroche, M. Synthesis of small metallic Mg-based nanoparticles confined in porous carbon materials for hydrogen sorption. Faraday Discuss 2011, 151, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gross, A.F.; Van Atta, S.L.; Lopez, M.; Liu, P.; Ahn, C.C.; Vajo, J.J.; Jensen, C.M. The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology 2009, 20, 204027. [Google Scholar] [CrossRef] [PubMed]
- Zlotea, C.; Oumellal, Y.; Hwang, S.-J.; Ghimbeu, C.M.; de Jongh, P.E.; Latroche, M. Ultrasmall MgH2 nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics. J. Phys. Chem. C 2015, 119, 18091–18098. [Google Scholar] [CrossRef]
- Chen, M.; Hu, M.; Xie, X.; Liu, T. High loading nanoconfinement of V–decorated Mg with 1 nm carbon shells: Hydrogen storage properties and catalytic mechanism. Nanoscale 2019, 11, 10045–10055. [Google Scholar] [CrossRef]
- Jia, Y.; Sun, C.; Cheng, L.; Wahab, M.A.; Cui, J.; Zou, J.; Zhu, M.; Yao, X. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys. Chem. Chem. Phys. 2013, 15, 5814–5820. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.J.J.; Lam, B.; MacLeod, B.P.; Sherbo, R.S.; Moreno-Gonzalez, M.; Fork, D.K.; Berlinguette, C.P. Facets and vertices regulate hydrogen uptake and release in palladium nanocrystals. Nat. Mater. 2019, 18, 454–458. [Google Scholar] [CrossRef]
- Ye, J.-H.; Zhao, Y.-J.; Fang, Y.-X.; Lin, H.-J.; Bai, L.; Tang, J.-J. Hydrogen adsorption, dissociation, and diffusion on high-index Mg(1013) and their comparisons with Mg(0001): A systematic first-principles study. Int. J. Hydrogen Energy 2019, 44, 4897–4906. [Google Scholar] [CrossRef]
- Dun, C.; Jeong, S.; Kwon, D.-H.; Kang, S.; Stavila, V.; Zhang, Z.; Lee, J.-W.; Mattox, T.M.; Heo, T.W.; Wood, B.C.; et al. Hydrogen storage performance of preferentially oriented Mg/rGO hybrids. Chem. Mater. 2022, 34, 2963–2971. [Google Scholar] [CrossRef]
- Kim, K.C.; Dai, B.; Johnson, J.K.; Sholl, D.S. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 2009, 20, 204001. [Google Scholar] [CrossRef]
- Vajeeston, P.; Ravindran, P.; Fichtner, M.; Fjellvåg, H. Influence of crystal structure of bulk phase on the stability of nanoscale phases: Investigation on MgH2 derived nanostructures. J. Phys. Chem. C 2012, 116, 18965–18972. [Google Scholar] [CrossRef] [Green Version]
- Vajeeston, P.; Sartori, S.; Ravindran, P.; Knudsen, K.D.; Hauback, B.; Fjellvåg, H. MgH2 in carbon scaffolds: A combined experimental and theoretical investigation. J. Phys. Chem. C 2012, 116, 21139–21147. [Google Scholar] [CrossRef]
- Liu, W.; Aguey-Zinsou, K.F. Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method. J. Mater. Chem. A 2014, 2, 9718–9726. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, X.; Zhao, S.; Chen, M.; Mao, J.; Luo, B.; Chen, L. Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride. J. Mater. Chem. A 2019, 7, 5277–5287. [Google Scholar] [CrossRef]
- Lotoskyy, M.; Denys, R.; Yartys, V.A.; Eriksen, J.; Goh, J.; Nyamsi, S.N.; Sita, C.; Cummings, F. An outstanding effect of graphite in nano-MgH2–TiH2 on hydrogen storage performance. J. Mater. Chem. A 2018, 6, 10740–10754. [Google Scholar] [CrossRef]
- Cui, J.; Wang, H.; Liu, J.; Ouyang, L.; Zhang, Q.; Sun, D.; Yao, X.; Zhu, M. Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 2013, 1, 5603–5611. [Google Scholar] [CrossRef]
- Cui, J.; Liu, J.; Wang, H.; Ouyang, L.; Sun, D.; Zhu, M.; Yao, X. Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) core–shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645–9655. [Google Scholar] [CrossRef]
- Zou, J.; Zeng, X.; Ying, Y.; Chen, X.; Guo, H.; Zhou, S.; Ding, W. Study on the hydrogen storage properties of core-shell structured Mg–RE (RE = Nd, Gd, Er) nano-composites synthesized through arc plasma method. Int. J. Hydrogen Energy 2013, 38, 2337–2346. [Google Scholar] [CrossRef]
- Mao, J.; Zou, J.; Lu, C.; Zeng, X.; Ding, W. Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M=V, Ni, La and Ce) nano-composites prepared by arc plasma method. J. Power Sources 2017, 366, 131–142. [Google Scholar] [CrossRef]
- Jain, I.P. Hydrogen the fuel for 21st century. Int. J. Hydrogen Energy 2009, 34, 7368–7378. [Google Scholar] [CrossRef]
- Zou, J.; Guo, H.; Zeng, X.; Zhou, S.; Chen, X.; Ding, W. Hydrogen storage properties of Mg–TM–La (TM = Ti, Fe, Ni) ternary composite powders prepared through arc plasma method. Int. J. Hydrogen Energy 2013, 38, 8852–8862. [Google Scholar] [CrossRef]
- Lu, C.; Zou, J.; Shi, X.; Zeng, X.; Ding, W. Synthesis and hydrogen storage properties of core-shell structured binary Mg@Ti and ternary Mg@Ti@Ni composites. Int. J. Hydrogen Energy 2017, 42, 2239–2247. [Google Scholar] [CrossRef]
- Lu, C.; Zou, J.; Zeng, X.; Ding, W. Hydrogen storage properties of core-shell structured Mg@TM (TM=Co, V) composites. Int. J. Hydrogen Energy 2017, 42, 15246–15255. [Google Scholar] [CrossRef]
- Jeon, K.J.; Moon, H.R.; Ruminski, A.M.; Jiang, B.; Kisielowski, C.; Bardhan, R.; Urban, J.J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 2011, 10, 286–290. [Google Scholar] [CrossRef]
- Xia, G.; Tan, Y.; Chen, X.; Sun, D.; Guo, Z.; Liu, H.; Ouyang, L.; Zhu, M.; Yu, X. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater. 2015, 27, 5981–5988. [Google Scholar] [CrossRef]
- Callini, E.; Pasquini, L.; Piscopiello, E.; Montone, A.; Vittori Antisari, M.; Bonetti, E. Hydrogen sorption in Pd-decorated Mg–MgO core-shell nanoparticles. Appl. Phys. Lett. 2009, 94, 221905. [Google Scholar] [CrossRef]
- Ma, Z.; Panda, S.; Zhang, Q.; Sun, F.; Khan, D.; Ding, W.; Zou, J. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem. Eng. J. 2021, 406, 126790. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Zhang, L.; Zhang, S.; Guo, W.; Zhao, Y.; Zhang, H.; Li, Y.; Han, S. The electrochemical characteristics of AB4-type rare earth-Mg–Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery. J. Magnes. Alloy. 2021, 9, 2039–2048. [Google Scholar] [CrossRef]
- Ouyang, L.; Huang, J.; Wang, H.; Liu, J.; Zhu, M. Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: A review. Mater. Chem. Phys. 2017, 200, 164–178. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, H.; Gao, M.; Wang, Q. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J. Mater. Chem. 2011, 21, 4743–4755. [Google Scholar] [CrossRef]
- Young, K.H.; Nei, J. The current status of hydrogen storage alloy development for electrochemical applications. Materials 2013, 6, 4574–4608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleperis, J.; Wojcik, G.; Czerwinski, A.; Skowronski, J.; Kopczyk, M.; Beltowska-Brzezinska, M. Electrochemical behavior of metal hydrides. J. Solid State Electrochem. 2001, 5, 229–249. [Google Scholar] [CrossRef]
- Cuevas, F.; Joubert, J.M.; Latroche, M.; Percheron-Guégan, A. Intermetallic compounds as negative electrodes of Ni/MH batteries. Appl. Phys. A Mater. Sci. Process. 2001, 72, 225–238. [Google Scholar] [CrossRef]
- Sünbül, S.E.; Öztürk, S.; İçin, K. Structural and hydrogen storage properties of Mg60-Ni40 and Mg80-Ni20 alloys prepared by planar flow casting. J. Mater. Eng. Perform. 2020, 29, 6101–6107. [Google Scholar] [CrossRef]
- Charbonnier, V.; Madern, N.; Monnier, J.; Zhang, J.; Paul-Boncour, V.; Latroche, M. Relationship between H2 sorption, electrochemical cycling and aqueous corrosion properties in A5Ni19 hydride-forming alloys (A = Gd, Sm). J. Power Sources 2018, 397, 280–287. [Google Scholar] [CrossRef]
- Wang, C.C.; Zhou, Y.T.; Yang, C.C.; Jiang, Q. A strategy for designing new AB4.5-type hydrogen storage alloys with high capacity and long cycling life. J. Power Sources 2018, 398, 42–48. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, L. Recent progress in hydrogen storage alloys for nickel/metal hydride secondary batteries. Int. J. Hydrogen Energy 2009, 34, 4788–4796. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, L.; Zhao, Y.; Cao, J.; Li, Y.; Dong, Z.; Wang, W.; Han, S. Self-discharge characteristic and mechanism of single-phase PuNi3-, Gd2Co7-, and Pr5Co19-type Nd–Mg–Ni-based alloys. J. Power Sources 2017, 371, 188–196. [Google Scholar] [CrossRef]
- Cui, N.; Luan, B.; Liu, H.K.; Dou, S.X. Discharge behaviour of Mg2Ni-typehydrogen-storage alloy electrodes in 6 M KOH solution by electrochemical impedance spectroscopy. J. Power Sources 1996, 63, 209–214. [Google Scholar] [CrossRef]
- Li, M.M.; Yang, C.C.; Wang, C.C.; Wen, Z.; Zhu, Y.F.; Zhao, M.; Li, J.C.; Zheng, W.T.; Lian, J.S.; Jiang, Q. Design of hydrogen storage alloys/nanoporous metals hybrid electrodes for nickel-metal hydride batteries. Sci. Rep. 2016, 6, 27601. [Google Scholar] [CrossRef] [Green Version]
- Giza, K.; Drulis, H. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process. Int. J. Mater. Res. 2016, 107, 103–108. [Google Scholar] [CrossRef]
- Wang, F.; Li, R.; Ding, C.; Wan, J.; Yu, R.; Wang, Z. Effect of catalytic Ni coating with different depositing time on the hydrogen storage properties of ZrCo alloy. Int. J. Hydrogen Energy 2016, 41, 17421–17432. [Google Scholar] [CrossRef]
- Sakai, T.; Yuasa, A.; Ishikawa, H.; Miyamura, H.; Kuriyama, N. Nickel-metal hydride battery using microencapsulated alloys. J. Less Common Met. 1991, 172–174, 1194–1204. [Google Scholar] [CrossRef]
- Sakai, T.; Miyamura, H.; Kuriyama, N.; Ishikawa, H.; Uehara, I. Hydrogen storage alloys for nickel-metal hydride battery. Z. Für Phys. Chemie. 1994, 183, 333–346. [Google Scholar] [CrossRef]
- Sun, L.; Lin, J.; Liang, F.; Cao, Z.; Wang, L. Ni coated Ti1.4V0.6Ni composite as the negative electrode in Ni-MH battery. Mater. Letters. 2015, 161, 686–689. [Google Scholar] [CrossRef]
- Li, M.M.; Yang, C.C.; Chen, L.X.; Jiang, Q. Hydrogen storage alloys/reduced graphite oxide: An efficient hybrid electrode with enhanced high-rate dischargeability. Electrochim. Acta. 2016, 200, 59–65. [Google Scholar] [CrossRef]
- Zadorozhnyy, M.Y.; Klyamkin, S.N.; Strugova, D.V.; Olifirov, L.K.; Milovzorov, G.S.; Kaloshkin, S.D.; Zadorozhnyy, V.Y. Deposition of polymer coating on metallic powder through ball milling: Application to hydrogen storage intermetallics. Int. J. Energy Res. 2016, 40, 273–279. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Y.; Yang, C.; Zhang, J.; Li, M.; Li, L. Significantly improved electrochemical hydrogen storage properties of magnesium nickel hydride modified with nano-nickel. J. Power Sources 2015, 280, 132–140. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, L.; Cai, C.; Wang, S. Effects of surface coating with polyaniline on electrochemical properties of La-Mg-Ni-based electrode alloys. Int. J. Hydrogen Energy 2014, 39, 10374–10379. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Y.; Huang, Z.; Tang, J.; Wang, Y.; Liu, J.; Jiao, J.; Liu, J.; Belfiore, L.A. Effects of graphene/silver nanohybrid additives on electrochemical properties of magnesium-based amorphous alloy. J. Power Sources 2014, 269, 716–722. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Dong, Z.; Wang, J.; Yang, S.; Ke, D.; Han, S. Effects of coating layers on electrochemical properties of Nd–Mg–Ni-based alloys. Int. J. Hydrogen Energy 2017, 42, 19148–19155. [Google Scholar] [CrossRef]
- Du, Y.; Li, N.; Zhang, T.L.; Feng, Q.P.; Du, Q.; Wu, X.H.; Huang, G.W. Reduced graphene oxide coating with anticorrosion and electrochemical property-enhancing effects applied in hydrogen storage system. ACS Appl. Mater. Interfaces 2017, 9, 28980–28989. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Liu, H.; Han, S.; Li, Y.; Shen, W. Effects of electroless composite plating Ni–Cu–P on the electrochemical properties of La-Mg-Ni-based hydrogen storage alloy. Appl. Surf. Sci. 2013, 271, 210–215. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, L.; Xuan, W.; Li, X. Nano-Ni induced surface modification relevant to the hydrogenation performances in La–Mg based alloys. Appl. Surf. Sci. 2018, 439, 18–23. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, L.; Xuan, W.; Qin, H.; Ji, Z. Ni–Al films induced surface modification of La2Mg17 alloy leading to improved dehydrogenation properties. J. Power Sources 2018, 385, 27–31. [Google Scholar] [CrossRef]
- Santos, S.F.; de Castro, J.F.R.; Ishikawa, T.T.; Ticianelli, E.A. Effect of mechanical coating with Ni and Ni-5% Al on the structure and electrochemical properties of the Mg-50% Ni alloy. J. Mater. Sci. 2008, 43, 2889–2894. [Google Scholar] [CrossRef]
- Ranjbar, A.; Aminorroaya, S.; Guo, Z.P.; Cho, Y.; Liu, H.K.; Dahle, A. Comparison of hydrogen storage properties of Mg–Ni from different preparation methods. Mater. Chem. Phys. 2011, 127, 405–408. [Google Scholar] [CrossRef]
- Guzmán, D.; Ordoñez, S.; Fernández, J.F.; Sánchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P. Effect of amorphous Mg50Ni50 on hydriding and dehydriding behavior of Mg2Ni alloy. Mater. Charact. 2011, 62, 442–450. [Google Scholar] [CrossRef]
- Tian, Q.; Zhang, Y.; Sun, L.; Xu, F.; Tan, Z.; Yuan, H.; Zhang, T. Effects of Pd substitution on the electrochemical properties of Mg0.9−xTi0.1PdxNi (x = 0.04–0.1) hydrogen storage alloys. J. Power Sources 2006, 158, 1463–1471. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Yuan, Z.; Wei, X.; Zhang, W.; Qi, Y.; Zhao, D. Effect of graphite (GR) content on electrochemical hydrogen storage performances of nanocrystalline and amorphous La9Ce1Mg80Ni5–Ni–GR composites synthesized by mechanical milling. Int. J. Hydrogen Energy 2020, 45, 29023–29033. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, G.; Dong, X.; Guo, S.; Ren, J.; Wang, X. Effect of substituting Co with Fe on the cycle stabilities of the as-cast and quenched AB5-type hydrogen storage alloys. J. Power Sources 2005, 148, 105–111. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Ren, H.; Cai, Y.; Dong, X.; Wang, X. Cycle stabilities of the La0.7Mg0.3Ni2.55−xCo0.45Mx (M=Fe, Mn, Al; x=0, 0.1) electrode alloys prepared by casting and rapid quenching. J. Alloy. Compd. 2008, 458, 340–345. [Google Scholar] [CrossRef]
- Yong, H.; Wei, X.; Wang, Y.; Guo, S.; Yuan, Z.; Qi, Y.; Zhao, D.; Zhang, Y. Phase evolution, thermodynamics and kinetics property of transition metal (TM = Zr, Ti, V) catalyzed Mg–Ce–Y–Ni hydrogen storage alloys. J. Phys. Chem. Solids 2020, 144, 109516. [Google Scholar] [CrossRef]
- Bu, W.; Peng, W.; Liu, Q.; Li, L.; Li, W.; Dai, X. Nanocrystalline structure and electrochemical hydrogen storage properties of the as-milled Mg–V–Ni–Fe–Zn-based materials. Int. J. Hydrogen Energy 2023, 48, 6937–6946. [Google Scholar] [CrossRef]
- Gan, H.; Yang, Y.; Shao, H. Improvement of the rate performance of hydrogen storage alloys by heat treatments in Ar and H2/Ar atmosphere for high-power nickel–metal hydride batteries. Electrochim. Acta 2015, 174, 164–171. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, Z.; Deng, J.; Yao, Q.; Zhou, H. Effects of surface treatment on electrochemical properties of AB3.8-type hydrogen storage alloy in alkaline electrolyte. Russ. J. Electrochem. 2015, 51, 244–248. [Google Scholar] [CrossRef]
- Abe, H.; Aone, S.; Morimoto, R.; Uchida, H.; Ohshima, T. Improvement of hydrogen absorption characteristics of Pd using irradiation of heavy ions. Trans. Mater. Res. Soc. Jpn. 2011, 36, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Abe, H.; Tokuhira, S.; Uchida, H.; Ohshima, T. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 365, 214–217. [Google Scholar] [CrossRef]
- Schulz, R.; Huot, J.; Liang, G.; Boily, S.; Lalande, G.; Denis, M.C.; Dodelet, J.P.; Banerjee, S. Recent developments in the applications of nanocrystalline materials to hydrogen technologies. Mater. Sci. Eng. A 1999, 267, 240–245. [Google Scholar] [CrossRef]
- Zaluska, A.; Zaluski, L.; Ström-Olsen, J. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A 2001, 72, 157–165. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, L.; Xuan, W.; Qi, J. Surface modification of the La1.7Mg1.3Ni9 alloy with trace Y2O3 related to the electrochemical hydrogen storage properties. Renew. Energy 2020, 145, 1572–1577. [Google Scholar] [CrossRef]
- Uchida, H.H.; Watanabe, Y.; Matsumura, Y.; Uchida, H. Effect of KOH pretreatment on the hydriding properties of LaNi2.5C02.5 alloy. J. Alloy. Compd. 1995, 231, 679–683. [Google Scholar] [CrossRef]
- Wu, M.S.; Wu, H.R.; Wang, Y.Y.; Wan, C.C. Electrochemical investigation of hydrogen-storage alloy electrode with duplex surface modification. Int. J. Hydrogen Energy 2004, 29, 1263–1269. [Google Scholar] [CrossRef]
- Kuriyama, N.; Sakai, T.; Miyamura, H.; Tanaka, H.; Uehara, I.; Meli, F.; Schlapbach, L. Surface treatment of a LaNi5-type metal-hydride electrode with an alkaline solution dissolving cobalt (II) hydroxide. J. Alloy. Compd. 1996, 238, 128–140. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Y.; Liu, Y.; Song, D.; Jiao, L.; Yuan, H. Influence of surface treatments on microstructure and electrochemical properties of La0.7Mg0.3Ni2.4Co0.6 hydrogen-storage alloy. Int. J. Hydrogen Energy 2008, 33, 3925–3929. [Google Scholar] [CrossRef]
- Ramya, K.; Velayutham, G.; Subramaniam, C.K.; Rajalakshmi, N.; Dhathathreyan, K.S. Effect of solvents on the characteristics of Nafion®/PTFE composite membranes for fuel cell applications. J. Power Sources 2006, 160, 10–17. [Google Scholar] [CrossRef]
- Patelli, N.; Migliori, A.; Morandi, V.; Pasquini, L. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage. Nano Energy 2020, 72, 104654. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y. Recent advances in additive-enhanced magnesium hydride for hydrogen storage. Prog. Nat. Sci. Mater. Int. 2017, 27, 41–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, F.; Guemou, S.; Yu, H.; Zhang, L.; Wang, Y. Constructing Mg2Co-Mg2CoH5 nano hydrogen pumps from LiCoO2 nanosheets for boosting the hydrogen storage property of MgH2. Dalton Trans. 2022, 51, 16195–16205. [Google Scholar] [CrossRef]
x | MDC (mA h g−1) | CRR C20/C1 (%) | CRR C50/C1 (%) | Cn > 200 mA h g−1 (Cycle Number) |
---|---|---|---|---|
0 | 455 | 31.6 | - | - |
0.04 | 390.7 | 66.7 | - | 46 |
0.06 | 366.5 | 69.4 | 59.9 | 67 |
0.08 | 343.9 | 77.8 | 64.8 | 77 |
0.1 | 326.5 | 74.2 | 67.2 | 80 |
Materials | Surface Treatment | ΔHde (kJ mol−1) | Capacity (wt%) | Tab (°C) | Tde (°C) | Ref. |
---|---|---|---|---|---|---|
Mg | - | 74.5 | 7.6 | - | 420 | [158] |
Mg | Surface catalytic phase (Ni@rGO) | - | 6.0 | - | 300 | [61] |
Mg | Surface catalytic phase (Co@CNTs) | - | 6.89 | - | 300 | [62] |
Mg | Surface catalytic phase (Fe3O4@GS) | 60.62 | 6.20 | 290 | - | [64] |
Mg | Surface catalytic phase (LiCoO2) | 48.5 | 5.5 | 250 | - | [159] |
Mg2FeH6 | Nanoparticles (<20 nm) | 74 | 5.2 | - | 355 | [76] |
La7Sm3Mg80Ni10 | Nanostructure | 74.23 | 3 | 300 | - | [74] |
Mg-Ti | Nanoparticles (<32 nm) | 71.3 | 5.2 | - | 190 | [79] |
Mg-Ti | Core–shell structure | - | 5 | - | 250 | [96] |
Mg | Core–shell structure (Mg-Er) | 69.9 | 7.37 | - | - | [98] |
Mg | Core–shell structure (Mg NCs-PMMA) | - | 5.97 | 200 | - | [104] |
Mg | Core–shell structure (Mg-NiF2) | - | 3.85 | 200 | - | [99] |
Mg | Core–shell structure (Mg@Co@V) | 74.83 | - | - | 323 | [103] |
Materials | Surface Treatment | MDC (mA h g−1) | CRR Cn/C1(%) | ECD (mA g−1) | Ref. |
---|---|---|---|---|---|
Nd0.7Mg0.3Ni3 | Coating layer (Ni) | 355 | 79.6 (C200) | 202.6 | [131] |
Nd0.7Mg0.3Ni3 | Coating layer (Co) | 337 | 76.5 (C200) | 163.6 | [131] |
La0.8Mg0.2Ni3.4Al0.1 | Coating layer (polyaniline) | 391.8 | 87.5 (C100) | 98.9 | [129] |
Mg2Ni | Coating layer (rGO) | 594 | 60 (C50) | 225.9 | [132] |
Mg2Ni | Coating layer (Ni) | 946 | 38 (C10) | 91.6 | [128] |
Mg0.9Ti0.1Ni | - | 455 | 31.6 (C20) | - | [139] |
Mg0.8Ti0.1Pd0.1Ni | Amorphous structure | 326.5 | 74.2 (C20) | 184 | [139] |
La9Ce1Mg80Ni5(Ni + 3 wt% GR) | Nanocrystalline and amorphous structures (ball milling 20 h) | 315.4 | 73 (C20) | - | [140] |
La9Ce1Mg80Ni5(Ni + 3 wt% GR) | Nanocrystalline and amorphous structures (ball milling 80 h) | 344.9 | 55 (C20) | - | [140] |
La0.88Mg0.12Ni2.95Mn0.10Co0.55Al0.10 | Surface catalytic phase (Ni-Cu-P) | 361 | 84.8 (C200) | 378.9 | [133] |
La0.75Mg0.25Ni3.2Co0.2Al0.1 | Surface catalytic phase (Cu-Pd) | 386.3 | 82.7 (C100) | 483.8 | [28] |
La1.7Mg1.3Ni9 | Surface catalytic phase (Y2O3, milled 10 h) | 392.2 | 90 (C30) | - | [151] |
La1.7Mg1.3Ni9 | Surface catalytic phase (Y2O3, milled 20 h) | 387 | 95 (C30) | - | [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Zhang, K.; Lin, X. Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel–Metal Hydride Batteries: A Review. Coatings 2023, 13, 1100. https://doi.org/10.3390/coatings13061100
Kang Y, Zhang K, Lin X. Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel–Metal Hydride Batteries: A Review. Coatings. 2023; 13(6):1100. https://doi.org/10.3390/coatings13061100
Chicago/Turabian StyleKang, Yinglong, Kemin Zhang, and Xi Lin. 2023. "Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel–Metal Hydride Batteries: A Review" Coatings 13, no. 6: 1100. https://doi.org/10.3390/coatings13061100
APA StyleKang, Y., Zhang, K., & Lin, X. (2023). Surface Modifications of Magnesium-Based Materials for Hydrogen Storage and Nickel–Metal Hydride Batteries: A Review. Coatings, 13(6), 1100. https://doi.org/10.3390/coatings13061100