Optimization of Bulk Heterojunction Organic Photovoltaics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef]
- Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T.T.; Krebs, F.C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater. 2010, 22, E135–E138. [Google Scholar] [CrossRef]
- Huang, H.-L.; Lee, C.-T.; Lee, H.-Y. Performance improvement mechanisms of P3HT:PCBM inverted polymer solar cells using extra PCBM and extra P3HT interfacial layers. Org. Electron. 2015, 21, 126–131. [Google Scholar] [CrossRef]
- Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. NIMS sets a new world record for the highest conversion efficiency in dye-sensitized solar cells. Prog. Photovolt. 2012, 20, 12–20. [Google Scholar] [CrossRef]
- Wang, J.; Cui, Y.; Xu, Y.; Xian, K.; Bi, P.; Chen, Z.; Zhou, K.; Ma, L.; Zhang, T.; Yang, Y.; et al. A New Polymer Donor Enables Binary All-Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Adv. Mater. 2022, 34, 2205009. [Google Scholar] [CrossRef] [PubMed]
- SolarPower Europe; ETIP PV. Solar Skins: An Opportunity for Greener Cities; SolarPower Europe; ETIP PV: Brussels, Belgium, 2019. [Google Scholar]
- Soares, G.A.; David, T.W.; Anizelli, H.; Miranda, B.; Rodrigues, J.; Lopes, P.; Martins, J.; Cunha, T.; Vilaça, R.; Kettle, J.; et al. Outdoor performance of organic photovoltaics at two different locations: A comparison of degradation and the effect of condensation. J. Renew. Sustain. Energy 2020, 12, 063502. [Google Scholar] [CrossRef]
- Glen, T.; Scarratt, N.; Yi, H.; Iraqi, A.; Wang, T.; Kingsley, J.; Buckley, A.; Lidzey, D.; Donald, A. Grain size dependence of degradation of aluminium/calcium cathodes in organic solar cells following exposure to humid air. Sol. Energy Mater. Sol. Cells 2015, 140, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Voroshazi, E.; Verreet, B.; Buri, A.; Müller, R.; Di Nuzzo, D.; Heremans, P. Influence of cathode oxidation via the hole extraction layer in polymer: Fullerene solar cells. Org. Electron. 2011, 12, 736–744. [Google Scholar] [CrossRef]
- Sun, Y.; Takacs, C.J.; Cowan, S.R.; Seo, J.H.; Gong, X.; Roy, A.; Heeger, A.J. Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv. Mater. 2011, 23, 2226–2230. [Google Scholar] [CrossRef]
- Norrman, K.; Alstrup, J.; Jørgensen, M.; Krebs, F.C. Lifetimes of organic photovoltaics: Photooxidative degradation of a model compound. Surf. Interface Anal. 2006, 38, 1302–1310. [Google Scholar] [CrossRef]
- Norrman, K.; Gevorgyan, S.A.; Krebs, F.C. Water-Induced Degradation of Polymer Solar Cells Studied by H218O Labeling. ACS Appl. Mater. Interfaces 2009, 1, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Burrows, P.E.; Graff, G.L.; Gross, M.E.; Martin, P.M.; Hall, M.; Mast, E.; Bonham, C.C.; Bennett, W.D.; Michalski, L.A.; Weaver, M.S.; et al. Gas permeation and lifetime tests on polymer-based barrier coatings. In Organic Light-Emitting Materials and Devices IV; SPIE: Bellingham, WA, USA, 2001; Volume 4105. [Google Scholar]
- Cros, S.; de Bettignies, R.; Berson, S.; Bailly, S.; Maisse, P.; Lemaitre, N.; Guillerez, S. Definition of encapsulation barrier requirements: A method applied to organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, S65–S69. [Google Scholar] [CrossRef]
- Nyga, A.; Blacha-Grzechnik, A.; Podsiadły, P.; Duda, A.; Kępska, K.; Krzywiecki, M.; Motyka, R.; Janssen, R.A.J.; Data, P. Singlet oxygen formation from photoexcited P3HT: PCBM films applied in oxidation reactions. Mater. Adv. 2022, 3, 2063–2069. [Google Scholar] [CrossRef]
- Kettle, J.; Stoichkov, V.; Kumar, D.; Corazza, M.; Gevorgyan, S.; Krebs, F.C. Using ISOS consensus test protocols for development of quantitative life test models in ageing of organic solar cells. Sol. Energy Mater. Sol. Cells 2017, 167, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Für Phys. Chem. 1889, 4U, 96–116. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv. Funct. Mater. 2005, 15, 1617–1622. [Google Scholar] [CrossRef]
- Mihailetchi, V.D.; Xie, H.X.; de Boer, B.; Koster, L.J.A.; Blom, P.W.M. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater. 2006, 16, 699–708. [Google Scholar] [CrossRef] [Green Version]
- De Luca, G.; Treossi, E.; Liscio, A.; Mativetsky, J.M.; Scolaro, L.M.; Palermo, V.; Samorì, P. Solvent vapour annealing of organic thin films: Controlling the self-assembly of functional systems across multiple length scales. J. Mater. Chem. 2010, 20, 2493–2498. [Google Scholar] [CrossRef]
- Verploegen, E.; Mondal, R.; Bettinger, C.J.; Sok, S.; Toney, M.F.; Bao, Z. Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends. Adv. Funct. Mater. 2010, 20, 3519–3529. [Google Scholar] [CrossRef]
- Manceau, M.; Helgesen, M.; Krebs, F.C. Thermo-cleavable polymers: Materials with enhanced photochemical stability. Polym. Degrad. Stab. 2010, 95, 2666–2669. [Google Scholar] [CrossRef]
- Kuhn, M.; Ludwig, J.; Marszalek, T.; Adermann, T.; Pisula, W.; Müllen, K.; Colsmann, A.; Hamburger, M. Tertiary Carbonate Side Chains: Easily Tunable Thermo-labile Breaking Points for Controlling the Solubility of Conjugated Polymers. Chem. Mater. 2015, 27, 2678–2686. [Google Scholar] [CrossRef] [Green Version]
- Gao, K.; Deng, W.; Xiao, L.; Hu, Q.; Kan, Y.; Chen, X.; Wang, C.; Huang, F.; Peng, J.; Wu, H.; et al. New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy 2016, 30, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, K.; Yang, G.; Lai, J.Y.L.; Ma, T.; Zhao, J.; Ma, W.; Yan, H. Donor polymer design enables efficient non-fullerene organic solar cells. Nat. Commun. 2016, 7, 13094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Yeon, C.; Lim, J.W.; Yun, S.J. Flexible p-type PEDOT: PSS/a-Si: H hybrid thin film solar cells with boron-doped interlayer. Sol. Energy 2018, 163, 398–404. [Google Scholar] [CrossRef]
- Benten, H.; Mori, D.; Ohkita, H.; Ito, S. Recent research progress of polymer donor/polymer acceptor blend solar cells. J. Mater. Chem. A 2016, 4, 5340–5365. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Yan, H.; Okuzaki, H. Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies. Synth. Met. 2009, 159, 2225–2228. [Google Scholar] [CrossRef]
- Tait, J.G.; Worfolk, B.J.; Maloney, S.A.; Hauger, T.C.; Elias, A.L.; Buriak, J.M.; Harris, K.D. Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol. Energy Mater. Sol. Cells 2013, 110, 98–106. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [Google Scholar] [CrossRef]
- Zhang, F.; Johansson, M.; Andersson, M.R.; Hummelen, J.C.; Inganäs, O. Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 2002, 14, 662–665. [Google Scholar] [CrossRef]
- Berggren, M.; Malliaras, G.G. How conducting polymer electrodes operate. Science 2019, 364, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, B.D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 2020, 19, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, Z.; Wei, W.; Hao, Y.; Liu, S.; Ouyang, J.; Chang, J. Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 2022, 14, 117. [Google Scholar] [CrossRef]
- Sun, K.; Li, P.; Xia, Y.; Chang, J.; Ouyang, J. Transparent conductive oxide-free perovskite solar cells with PEDOT: PSS as transparent electrode. ACS Appl. Mater. Interfaces 2015, 7, 15314–15320. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Kim, M.-C.; Choi, Y.W.; Ahn, N.; Jang, J.; Yoon, J.; Kim, S.M.; Lee, J.-G.; Kang, D.; Jung, H.S.; et al. Ultra-flexible perovskite solar cells with crumpling durability: Toward a wearable power source. Energy Environ. Sci. 2019, 12, 3182. [Google Scholar] [CrossRef]
- Xie, H.; Liang, T.; Yin, X.; Liu, J.; Liu, D.; Wang, G.; Gao, B.; Que, W. Mechanical Stability Study on PEDOT: PSS-Based ITO-Free Flexible Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 3081–3091. [Google Scholar] [CrossRef]
- You, J.; Hong, Z.; Yang, Y.; Chen, Q.; Cai, M.; Song, T.-B.; Chen, C.-C.; Lu, S.; Liu, Y.; Zhou, H. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 2014, 8, 1674–1680. [Google Scholar] [CrossRef]
- Yang, Z.; Chueh, C.-C.; Zuo, F.; Kim, J.H.; Liang, P.-W.; Jen, A.K.-Y. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv. Energy Mater. 2015, 5, 1500328. [Google Scholar] [CrossRef]
- Cooling, N.A.; Barnes, E.F.; Almyahi, F.; Feron, K.; Al-Mudhaffer, M.F.; Al-Ahmad, A.; Vaughan, B.; Andersen, T.R.; Griffith, M.J.; Hart, A.S.; et al. A low-cost mixed fullerene acceptor blend for printed electronics. J. Mater. Chem. A 2016, 4, 10274–10281. [Google Scholar] [CrossRef]
- Ali, A.Y.; Holmes, N.P.; Ameri, M.; Feron, K.; Thameel, M.N.; Barr, M.G.; Fahy, A.; Holdsworth, J.; Belcher, W.; Dastoor, P.; et al. Low-Temperature CVD-Grown Graphene Thin Films as Transparent Electrode for Organic Photovoltaics. Coatings 2022, 12, 681. [Google Scholar] [CrossRef]
- Seemann, A.; Sauermann, T.; Lungenschmied, C.; Armbruster, O.; Bauer, S.; Egelhaaf, H.J.; Hauch, J. Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 2011, 85, 1238–1249. [Google Scholar] [CrossRef]
- Norrman, K.; Krebs, F.C. Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms. Sol. Energy Mater. Sol. Cells 2006, 90, 213–227. [Google Scholar] [CrossRef]
- Madogni, V.I.; Kounouhéwa, K.; Akpo, A.; Agbomahéna, M.; Hounkpatin, S.A.; Awanou, C.N. Comparison of degradation mechanisms in organic photovoltaic devices upon exposure to a temperate and a subequatorial climate. Chem. Phys. Lett. 2015, 640, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Wang, J. Fill factor in organic solar cells. Phys. Chem. Chem. Phys. 2013, 15, 8972–8982. [Google Scholar]
- Grossiord, N.; Kroon, J.M.; Andriessen, R.; Blom, P.W. Degradation mechanisms in organic photovoltaic devices. Org. Electron. 2012, 13, 432–456. [Google Scholar] [CrossRef] [Green Version]
- Schafferhans, J.; Baumann, A.; Wagenpfahl, A.; Deibel, C.; Dyakonov, V. Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance. Org. Electron. 2010, 11, 1693–1700. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yao, Y.; Wu, C.-Q. Mechanisms of device degradation in organic solar cells: Influence of charge injection at the metal/organic contacts. Org. Electron. 2013, 14, 1992–2000. [Google Scholar] [CrossRef]
- Ameri, T.; Dennier, G.; Waldauf, C.; Azimi, H.; Seemann, A.; Forberich, K.; Hauch, J.; Hingeril, K.; Brabec, C.J. Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk-Heterojunction Organic Solar Cells in an Inverted Structure. Adv. Funct. Mater. 2010, 20, 1592–1598. [Google Scholar] [CrossRef]
- Yamanari, T.; Taima, T.; Sakai, J.; Tsukamoto, J.; Yoshida, Y. Effect of buffer layers on stability of polymer-based organic solar cells. Jpn. J. Appl. Phys. 2010, 49, 01AC02. [Google Scholar] [CrossRef]
- Chambon, S.; Rivaton, A.; Gardette, J.L.; Firon, M.; Lutsen, L.; Polym, J. Aging of a donor conjugated polymer: Photochemical studies of the degradation of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 317–331. [Google Scholar] [CrossRef]
- Wang, T.; Pearson, A.J.; Lidzey, D.G.; Jones, R.A.L. Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene: Fullerene Solar Cells During Thermal Annealing. Adv. Funct. Mater. 2011, 21, 1383–1390. [Google Scholar] [CrossRef]
- Savenije, T.J.; Kroeze, J.E.; Yang, X.; Loos, J. The Effect of Thermal Treatment on the Morphology and Charge Carrier Dynamics in a Polythiophene–Fullerene Bulk Heterojunction. Adv. Funct. Mater. 2005, 15, 1260–1266. [Google Scholar] [CrossRef]
- Padinger, F.; Rittberger, R.; Sariciftci, N. Effects of Postproduction Treatment on Plastic Solar Cells. Adv. Funct. Mater. 2003, 13, 85–88. [Google Scholar] [CrossRef]
- Erb, T.; Zhokhavets, U.; Gobsch, G.; Raleva, S.; Stühn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C.J. Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells. Adv. Funct. Mater. 2005, 15, 1193–1196. [Google Scholar] [CrossRef]
- Zhao, J.; Swinnen, Z.; Van Assche, G.; Manca, J.; Vanderzande, D.; Van Mele, B. Phase Diagram of P3HT/PCBM Blends and Its Implication for the Stability of Morphology. J. Phys. Chem. B 2009, 113, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, J.; Cancellieri, C.; Rheingans, B.; Jeurgens, L.P.H.; La Mattina, F. Advanced Epitaxial Lift-Off and Transfer Procedure for the Fabrication of High-Quality Functional Oxide Membranes. Adv. Mater. Interfaces 2023, 10, 2201458. [Google Scholar] [CrossRef]
- Rui, Y.; Jin, Z.; Fan, X.; Li, W.; Li, B.; Li, T.; Wang, Y.; Wang, L.; Liang, J. Defect passivation and electrical conductivity enhancement in perovskite solar cells using functionalized graphene quantum dots. Mater. Futures 2022, 1, 045101. [Google Scholar] [CrossRef]
- Po, R.; Carbonera, C.; Bernardi, A.; Tinti, F.; Camaioni, N. Polymer- and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Sol. Energy Mater. Sol. Cells 2012, 100, 97–114. [Google Scholar] [CrossRef]
- Po, R.; Chiara, C.; Bernardi, A.; Camaioni, N. The role of buffer layers in polymer solar cells. Energy Environ. Sci. 2011, 4, 285–310. [Google Scholar] [CrossRef]
- Irwin, M.D.; Buchholz, D.B.; Hains, A.W.; Chang, R.P.H.; Marks, T.J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. USA 2008, 105, 2783–2787. [Google Scholar]
- Brabec, C.; Scherf, U.; Dyakonov, V. (Eds.) Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Chapter 7. [Google Scholar]
- Li, G.; Chu, C.-W.; Shrotriya, V.; Huang, J.; Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 2006, 88, 253503. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-W.; Lan, C.-S.; Wei, K.-H. Organic photovoltaics. Mater. Today 2012, 15, 554–562. [Google Scholar] [CrossRef]
- Kiermasch, D.; Gil-Escrig, L.; Bolink, H.J.; Tvingstedt, K. Effects of Masking on Open-Circuit Voltage and Fill Factor in Solar Cells. Joule 2019, 3, 16–26. [Google Scholar]
- Wang, G.; Ma, L.-J.; Lei, B.-X.; Wu, H.; Liu, Z.-Q. Enhanced electron transport through two-dimensional Ti3C2 in dye-sensitized solar cells. Rare Met. 2022, 41, 3078–3085. [Google Scholar]
- Su, Y.-W.; Huang, Y.-S.; Huang, H.-C.; Chen, P.-T. Optoelectronic Properties of a Benzodithiophene-Based Organic Photovoltaic. ECS J. Solid State Sci. Technol. 2021, 10, 075003. [Google Scholar] [CrossRef]
Condition | PCE (%) | JSC (mA/cm2) | VOC (V) | FF | Cell Area (mm2) |
---|---|---|---|---|---|
Ambient Atmosphere (Best Device) | 2.3 | −8.309 | 0.56 | 0.49 | 5 |
Ambient Atmosphere (Average Data) | 2.1 | −7.7 | 0.56 | 0.5 | 5 |
Glove Box (Best Device) | 2.88 | −9.068 | 0.57 | 0.55 | 5 |
Glove Box (Average Data) | 2.5 | −8.2 | 0.56 | 0.5 | 5 |
Condition | PCE (%) | JSC (mA/cm2) | VOC (V) | FF | Cell Area (mm2) |
---|---|---|---|---|---|
Dried Device (Best Device) | 1.87 | −6.304 | 0.6 | 0.49 | 5 |
Dried Device (Average Data) | 1.6 | −5.3 | 0.59 | 0.5 | 5 |
Annealed Device (Best Device) | 2.75 | −8.407 | 0.56 | 0.57 | 5 |
Condition | PCE (%) | JSC (mA/cm2) | VOC (V) | FF | Cell Area (mm2) |
---|---|---|---|---|---|
Annealed before Al (Best Device) | 2.75 | −8.407 | 0.56 | 0.57 | 5 |
Annealed before Al (Average Data) | 2.5 | −7.8 | 0.56 | 0.6 | 5 |
Annealed after Al (Best Device) | 1.85 | −6.163 | 0.59 | 0.5 | 5 |
Annealed after Al (Average Data) | 1.6 | −5.2 | 0.6 | 0.5 | 5 |
PEDOT:PSS Type | PCE (%) | JSC (mA/cm2) | VOC (V) | FF | Cell Area (mm2) |
---|---|---|---|---|---|
PEDOT:PSS-PH1000 | 3.14 | −12.36 | 0.55 | 0.46 | 5 |
PEDOT:PSS-PH1000 | 2.76 | −9.3 | 0.54 | 0.55 | 3.8 |
PEDOT:PSS-Al 4083 | 3.06 | −8.38 | 0.55 | 0.66 | 5 |
PEDOT:PSS-Al 4083 | 3.04 | −7.92 | 0.55 | 0.7 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.Y.; Holmes, N.P.; Cooling, N.; Holdsworth, J.; Belcher, W.; Dastoor, P.; Zhou, X. Optimization of Bulk Heterojunction Organic Photovoltaics. Coatings 2023, 13, 1293. https://doi.org/10.3390/coatings13071293
Ali AY, Holmes NP, Cooling N, Holdsworth J, Belcher W, Dastoor P, Zhou X. Optimization of Bulk Heterojunction Organic Photovoltaics. Coatings. 2023; 13(7):1293. https://doi.org/10.3390/coatings13071293
Chicago/Turabian StyleAli, Alaa Y., Natalie P. Holmes, Nathan Cooling, John Holdsworth, Warwick Belcher, Paul Dastoor, and Xiaojing Zhou. 2023. "Optimization of Bulk Heterojunction Organic Photovoltaics" Coatings 13, no. 7: 1293. https://doi.org/10.3390/coatings13071293
APA StyleAli, A. Y., Holmes, N. P., Cooling, N., Holdsworth, J., Belcher, W., Dastoor, P., & Zhou, X. (2023). Optimization of Bulk Heterojunction Organic Photovoltaics. Coatings, 13(7), 1293. https://doi.org/10.3390/coatings13071293