An Optimized Dip Coating Approach for Metallic, Dielectric, and Semiconducting Nanomaterial-Based Optical Thin Film Fabrication
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
viz. | Videlicet |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
UV-vis | Ultraviolet-visible spectroscopy |
APTES | 3-aminopropyltriethoxysilane |
NPs | Nanoparticles |
SPR | Surface plasmon resonance |
AFM | Atomic force microscopy |
Appendix A
Appendix A.1
Appendix A.2
Appendix B
References
- Căilean, A.M.; Dimian, M. Current challenges for visible light communications usage in vehicle applications: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Pimenta, S.; Cardoso, S.; Miranda, A.; De Beule, P.; Castanheira, E.; Minas, G. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction. Biomed. Opt. Express 2015, 6, 3084–3098. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Woo, H.K.; Lee, Y.M.; Kim, Y.; Choi, J.H.; Oh, S.J. Controllable doping and passivation of ZnO thin films by surface chemistry modification to design low-cost and high-performance thin film transistors. Appl. Surf. Sci. 2020, 509, 145289. [Google Scholar] [CrossRef]
- Yu, R.; Mazumder, P.; Borrelli, N.F.; Carrilero, A.; Ghosh, D.S.; Maniyara, R.A.; Baker, D.; García de Abajo, F.J.; Pruneri, V. Structural coloring of glass using dewetted nanoparticles and ultrathin films of metals. ACS Photonics 2016, 3, 1194–1201. [Google Scholar] [CrossRef] [Green Version]
- Shaukat, A.; Noble, F.; Arif, K.M. Nanostructured color filters: A review of recent developments. Nanomaterials 2020, 10, 1554. [Google Scholar] [CrossRef]
- Ge, P.; Liang, X.; Wang, J.; Zhao, C.; Gao, X.; Ding, Z. Optical filter designs for multi-color visible light communication. IEEE Trans. Commun. 2018, 67, 2173–2187. [Google Scholar] [CrossRef]
- Kaiser, N. Review of the fundamentals of thin-film growth. Appl. Opt. 2002, 41, 3053–3060. [Google Scholar] [CrossRef] [PubMed]
- Barber, Z.; Blamire, M. High throughput thin film materials science. Mater. Sci. Technol. 2008, 24, 757–770. [Google Scholar] [CrossRef]
- Kumar, A.K.S.; Zhang, Y.; Li, D.; Compton, R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Mustafa, H.A.M.; Jameel, D.A. Modeling and the main stages of spin coating process: A review. J. Appl. Sci. Technol. Trends 2021, 2, 91–95. [Google Scholar] [CrossRef]
- Safi, I. Recent aspects concerning DC reactive magnetron sputtering of thin films: A review. Surf. Coat. Technol. 2000, 127, 203–218. [Google Scholar] [CrossRef]
- Affinito, J.; Martin, P.; Gross, M.; Coronado, C.; Greenwell, E. Vacuum deposited polymer/metal multilayer films for optical application. Thin Solid Film. 1995, 270, 43–48. [Google Scholar] [CrossRef]
- Wasa, K.; Kanno, I.; Kotera, H. Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS; William Andrew Publishing: Norwich, NY, USA, 2012. [Google Scholar]
- Khan, Z.R.; Khan, M.S.; Zulfequar, M.; Khan, M.S. Optical and structural properties of ZnO thin films fabricated by sol-gel method. Mater. Sci. Appl. 2011, 2, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Vahid Mohammadi, A.; Wang, Z.; Ouyang, L.; Beidaghi, M.; Hamedi, M.M. Layer-by-layer self-assembly of pillared two-dimensional multilayers. Nat. Commun. 2019, 10, 2558. [Google Scholar] [CrossRef] [Green Version]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I.; Popova, E.; Moskina, A.; Popov, A. Characterization of CdxTeyOz/CdS/ZnO Heterostructures Synthesized by the SILAR Method. Coatings 2023, 13, 639. [Google Scholar] [CrossRef]
- Butt, M.A. Thin-film coating methods: A successful marriage of high-quality and cost-effectiveness—A brief exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Samha, H.; DeArmond, M.K. Multilayer sol-gel films using the Langmuir-Blodgett deposition method. Langmuir 1993, 9, 1927–1929. [Google Scholar] [CrossRef]
- Kitsomboonloha, R.; Ngambenjawong, C.; Mohammed, W.; Chaudhari, M.; Hornyak, G.; Dutta, J. Plasmon resonance tuning of gold and silver nanoparticle-insulator multilayered composite structures for optical filters. Micro Nano Lett. 2011, 6, 342–344. [Google Scholar] [CrossRef]
- Higashi, N.; Takagi, T.; Koga, T. Layer-by-layer fabrication of well-packed gold nanoparticle assemblies guided by a β-sheet peptide network. Polym. J. 2010, 42, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Rivero, P.J.; Goicoechea, J.; Matias, I.R.; Arregui, F.J. A comparative study of two different approaches for the incorporation of silver nanoparticles into layer-by-layer films. Nanoscale Res. Lett. 2014, 9, 301. [Google Scholar] [CrossRef] [Green Version]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Layer-by-layer nano-assembly: A powerful tool for optical fiber sensing applications. Sensors 2019, 19, 683. [Google Scholar] [CrossRef] [Green Version]
- Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Arregui, F. Optical fiber humidity sensors based on Localized Surface Plasmon Resonance (LSPR) and Lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles. Sens. Actuator B Chem. 2012, 173, 244–249. [Google Scholar] [CrossRef]
- Yuehui, W.; Xing, Y. High-reflection optical thin films based on SiO2/TiO2 nanoparticles multilayers by dip coating. Micro Nano Lett. 2018, 13, 1349–1351. [Google Scholar] [CrossRef]
- Shibraen, M.H.; Yagoub, H.; Zhang, X.; Xu, J.; Yang, S. Anti-fogging and anti-frosting behaviors of layer-by-layer assembled cellulose derivative thin film. Appl. Surf. Sci. 2016, 370, 1–5. [Google Scholar] [CrossRef]
- Saffar, M.A.; Eshaghi, A.; Dehnavi, M.R. Fabrication of superhydrophobic, self-cleaning and anti-icing ZnO/PTFE-SiO2 nano-composite thin film. Mater. Chem. Phys. 2021, 259, 124085. [Google Scholar] [CrossRef]
- Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Matias, I.; Arregui, F. A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens. Actuator B Chem. 2013, 187, 40–44. [Google Scholar] [CrossRef]
- Michel, M.; Toniazzo, V.; Ruch, D.; Ball, V. Deposition mechanisms in layer-by-layer or step-by-step deposition methods: From elastic and impermeable films to soft membranes with ion exchange properties. ISRN Mater. Sci. 2012, 2012, 701695. [Google Scholar] [CrossRef] [Green Version]
- Scherino, L.; Giaquinto, M.; Micco, A.; Aliberti, A.; Bobeico, E.; La Ferrara, V.; Ruvo, M.; Ricciardi, A.; Cusano, A. A time-efficient dip coating technique for the deposition of microgels onto the optical fiber tip. Fibers 2018, 6, 72. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Yang, D.; Fei, L.; Huang, Y.; Wu, F.; Sun, Y.; Shi, J.; Xiang, Y. Dip-coating process engineering and performance optimization for three-state electrochromic devices. Nanoscale Res. Lett. 2017, 12, 390. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Aghaei, A.A.; Zabolian, H.; Jannesari, M.; Firoozifar, A. Transparent superhydrophilic SiO2/TiO2/SiO2 tri-layer nanostructured antifogging thin film. Ceram. Silik. 2013, 57, 210–214. [Google Scholar]
- Szeghalmi, A.; Helgert, M.; Brunner, R.; Heyroth, F.; Gösele, U.; Knez, M. Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings. Appl. Opt. 2009, 48, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Shelemin, A.; Baloukas, B.; Zabeida, O.; Klemberg-Sapieha, J.E.; Martinu, L. Fabrication of plasmonic Ag nanoparticles for optical coating applications. In Proceedings of the Optical Interference Coatings Conference (OIC 2022), Whistler, BC, Canada, 19–24 June 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. MD-3. [Google Scholar]
- Park, C.; Kim, T.; Kim, Y.I.; Lee, M.W.; An, S.; Yoon, S.S. Supersonically sprayed transparent flexible multifunctional composites for self-cleaning, anti-icing, anti-fogging, and anti-bacterial applications. Compos. Part B Eng. 2021, 222, 109070. [Google Scholar] [CrossRef]
- Halbus, A.F.; Horozov, T.S.; Paunov, V.N. Surface-modified zinc oxide nanoparticles for antialgal and antiyeast applications. ACS Appl. Nano Mater. 2020, 3, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Xu, X.H.N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. J. Mater. Chem. 2010, 20, 9867–9876. [Google Scholar] [CrossRef] [Green Version]
- Natte, K.; Behnke, T.; Orts-Gil, G.; Würth, C.; Friedrich, J.F.; Österle, W.; Resch-Genger, U. Synthesis and characterisation of highly fluorescent core–shell nanoparticles based on Alexa dyes. J. Nanopart. Res. 2012, 14, 680. [Google Scholar] [CrossRef]
- Baruah, S.; Rafique, R.F.; Dutta, J. Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures. Nano 2008, 3, 399–407. [Google Scholar] [CrossRef]
Thin Film | Depositing Nanoparticles | No. of Dips | Timing of Intermediate APTES Layer |
---|---|---|---|
F1 | Ag (prismatic) | 25 | - |
F2 | 50 | - | |
F3 | 100 | - | |
F4 | 100 | After 50 dipping–drying cycles | |
F5 | 50 * | - | |
F6 | 100 * | - | |
F7 | 150 | After every 50 dipping–drying cycles | |
F8 | Ag (spherical) | 25 | - |
F9 | 35 | - | |
F10 | 50 | - | |
F11 | 100 | After 50 dipping–drying cycles | |
F12 | 150 | After every 50 dipping–drying cycles | |
3-4 F8R1 | 25 | - | |
F8R2 | 25 | - | |
F8R3 | 25 | - | |
S1 | SiO2 | 1 | - |
S2 | 2 | After the first dip | |
S3 | 3 | ||
S4 | 4 | After every dipping–drying cycle | |
SFS1 | Both SiO2 and Ag (spherical) | Silica-1 | Silica—after every dipping–drying cycle |
Ag-50 | |||
SFS2 | Silica-2 | ||
Ag-50 | |||
SFS3 | Silica-2 | Ag—after every 50 dipping–drying cycles | |
Ag-100 | |||
SFS4 | Silica-3 | ||
Ag-100 | |||
ZS1 | ZnO | 50 | - |
ZS2 | 100 | - | |
ZS3 | 150 | - | |
ZS4 | 100 | After 50 dipping–drying cycles | |
ZS5 | 150 | After every 50 dipping–drying cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, A.K.; Sarmah, D.; Baruah, S.; Datta, P. An Optimized Dip Coating Approach for Metallic, Dielectric, and Semiconducting Nanomaterial-Based Optical Thin Film Fabrication. Coatings 2023, 13, 1391. https://doi.org/10.3390/coatings13081391
Sarkar AK, Sarmah D, Baruah S, Datta P. An Optimized Dip Coating Approach for Metallic, Dielectric, and Semiconducting Nanomaterial-Based Optical Thin Film Fabrication. Coatings. 2023; 13(8):1391. https://doi.org/10.3390/coatings13081391
Chicago/Turabian StyleSarkar, Arnab Kumar, Devabrata Sarmah, Sunandan Baruah, and Pranayee Datta. 2023. "An Optimized Dip Coating Approach for Metallic, Dielectric, and Semiconducting Nanomaterial-Based Optical Thin Film Fabrication" Coatings 13, no. 8: 1391. https://doi.org/10.3390/coatings13081391
APA StyleSarkar, A. K., Sarmah, D., Baruah, S., & Datta, P. (2023). An Optimized Dip Coating Approach for Metallic, Dielectric, and Semiconducting Nanomaterial-Based Optical Thin Film Fabrication. Coatings, 13(8), 1391. https://doi.org/10.3390/coatings13081391