Characterization and Electrochemical Analysis of Acidic Condensate-Induced Corrosion on Aluminized Coating on Steel in Residential Heaters
Abstract
:1. Introduction
2. Experimental Methods
2.1. Corrosion Testing and ICP-OES
2.2. Electrochemical Impedance Spectroscopy (EIS)
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Immersion Time | 2 h | 5.5 h | 11 h | 19.5 h | |
---|---|---|---|---|---|
Ecorr/mVMSE | −833 | −823 | −806 | −782 | |
Rsol/ohm | 566 | 403 | 270 | 216 | |
Rfilm/ohm·cm2 | 6252 | 5667 | 5890 | 6902 | |
Rintf/ohm·cm2 | 1518 | 1483 | 1546 | 1761 | |
CPEfilm | Capacitance/F·cm−2 | 1.13 × 10−5 | 1.6 × 10−5 | 2 × 10−5 | 2.38 × 10−5 |
n | 0.95 | 0.95 | 0.94 | 0.93 | |
CPEintf | Capacitance/F·cm−2 | 2.5 × 10−3 | 3.15 × 10−3 | 3.55 × 10−3 | 3.88 × 10−3 |
n | 1 | 1 | 1 | 1 | |
Chi-square | 8 × 10−4 | 6.9 × 10−4 | 5.3 × 10−4 | 3.5 × 10−4 |
Immersion Time | 5.5 h | 11 h | 19.5 h | |
---|---|---|---|---|
Ecorr/mVMSE | −646 | −638 | −643 | |
Rsol/ohm | 849 | 503 | 731 | |
Rcrp/ohm·cm2 | 146 | 72 | 113 | |
Rfilm/ohm·cm2 | 1027 | 1227 | 996 | |
Rintf/ohm·cm2 | 2550 | 2351 | 1301 | |
CPEcoat | Capacitance/F·cm−2 | 1.38 × 10−8 | 4.02 × 10−8 | 2.19 × 10−8 |
n | 0.95 | 0.92 | 0.94 | |
CPEfilm | Capacitance/F·cm−2 | 1.02 × 10−4 | 1.16 × 10−4 | 1.31 × 10−4 |
n | 0.74 | 0.79 | 0.78 | |
CPEintf | Capacitance/F·cm−2 | 4.52 × 10−3 | 5.32 × 10−3 | 6.62 × 10−3 |
n | 0.91 | 0.85 | 1 | |
Chi-square | 2.9 × 10−4 | 8.9 × 10−4 | 2 × 10−4 |
References
- EIA.gov. Space Heating in U.S. Homes, by Housing Unit Type. 2020. Available online: https://www.eia.gov/consumption/residential/data/2020/hc/pdf/HC%206.1.pdf (accessed on 24 April 2023).
- Energy.gov. Furnaces and Boilers. 2023. Available online: https://www.energy.gov/energysaver/furnaces-and-boilers (accessed on 24 April 2023).
- Saraireh, M.; Thorpe, G. Condensation of vapor in the presence of non-condensable gas in condensers. Int. J. Heat Mass Transf. 2011, 54, 4078–4089. [Google Scholar]
- Terhan, M.; Comakli, K. Design and economic analysis of a flue gas condenser to recover latent heat from exhaust flue gas. Appl. Therm. Eng. 2016, 100, 1007–1015. [Google Scholar] [CrossRef]
- Sonibare, J.; Akeredolu, F. A theoretical prediction of non-methane gaseous emissions from natural gas combustion. Energy Policy 2004, 32, 1653–1665. [Google Scholar] [CrossRef]
- Land, T. Theory of acid deposition and its application to the dew-point meter. J. Inst. Fuel 1977, 50, 68–75. [Google Scholar]
- Gao, Z.; Gluesenkamp, K.; Gehl, A.; Pihl, J.; LaClair, T.; Zhang, M.; Sulejmanovic, D.; Munk, J.; Nawaz, K. Ultra-clean condensing gas furnace enabled with acidic gas reduction. Energy 2022, 243, 123068. [Google Scholar] [CrossRef]
- Chance, R.L.; Ceselli, R.G. Corrosiveness of Exhaust Gas Condensates; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1983. [Google Scholar]
- Carter, V. Metallic Coatings for Corrosion Control: Corrosion Control Series. Newnes Elsevier Ltd.: Amsterdam, Netherlands, 2013. [Google Scholar]
- Green, R. Paint manufacturer’s viewpoint: Painting for protection. Corros. Prev. Control 1986, 33, 21–24. [Google Scholar]
- Kim, Y.-W.; Nickola, R.A. A Heat Resistant Aluminized Steel for High Temperature Applications; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1980. [Google Scholar]
- Kelly, O.E.; Abdulsamad, G. Engineering material selection for automotive exhaust systems using CES software. Int. J. Eng. Technol. IJET 2017, 3, 50–60. [Google Scholar]
- Chattha, M.S.; Perry, J.; Goss, R.L.; Peters, C.R.; Gandhi, H.S. Corrosion of aluminized low-carbon steel exhaust system in vehicles equipped with three-way catalytic converters and development of a protective polymeric coating. Ind. Eng. Chem. Res. 1990, 29, 1438–1442. [Google Scholar] [CrossRef]
- Bayer, G. Vapor aluminum diffused steels for high-temperature corrosion resistance. Mater. Perform. 1995, 34–38, 34–38. [Google Scholar]
- Ravi, V.; Nguyen, T.; Nava, J. Aluminizing of steel to improve high temperature corrosion resistance. In Thermochemical Surface Engineering of Steels; Elsevier: Amsterdam, The Netherlands, 2015; pp. 751–767. [Google Scholar]
- Coburn, K. Aluminized steel, properties and uses. JOM 1959, 11, 38–39. [Google Scholar] [CrossRef]
- Huijbregts, W.; Leferink, R. Latest advances in the understanding of acid dewpoint corrosion: Corrosion and stress corrosion cracking in combustion gas condensates. Anti-Corros. Methods Mater. 2004, 51, 173–188. [Google Scholar] [CrossRef]
- Kukacka, L.; Sugama, T. Materials studies for preventing corrosion in condensing environments. In Annual Report, October 1990–September 1991; Brookhaven National Lab. (BNL): Upton, NY, USA; Institute of Gas: Des Plaines, IL, USA, 1991. [Google Scholar]
- Lahtvee, T.; Schaus, O. Study of Materials to Resist Corrosion in Condensing Gas-Fired Furnaces. Final Report Oct 79–Dec 81; Canadian Gas Research Inst.: Don Mills, ON, Canada, 1982. [Google Scholar]
- Macdonald, D.D.; Liu, C.; Urquidi-Macdonald, M.; Stickford, G.H.; Hindin, B.; Agrawal, A.K.; Krist, K. Prediction and measurement of pitting damage functions for condensing heat exchangers. Corrosion 1994, 50, 761–780. [Google Scholar] [CrossRef]
- Jun, J.; Su, Y.-F.; Keiser, J.R.; Wade, J.E.; Kass, M.D.; Ferrell, J.R.; Christensen, E.; Olarte, M.V.; Sulejmanovic, D. Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures. Sustainability 2023, 15, 22. [Google Scholar] [CrossRef]
- Sulejmanovic, D.; Keiser, J.R.; Su, Y.-F.; Kass, M.D.; Ferrell, J.R.; Olarte, M.V.; Wade, J.E.; Jun, J. Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil. Sustainability 2022, 14, 11743. [Google Scholar] [CrossRef]
- Diler, E.; Peltier, F.; Becker, J.; Thierry, D. Real-time corrosion monitoring of aluminium alloys under chloride-contaminated atmospheric conditions. Mater. Corros. 2021, 72, 1377–1387. [Google Scholar] [CrossRef]
- ASTM 2003(G110-92); Standard Practice for Evaluating Intergranular Corrosion Resistance of Heat Treatable Aluminum Alloys by Immersion in Sodium Chloride + Hydrogen Peroxide Solution. ASTM International: West Conshohocken, PA, USA, 2003.
- Zhang, H.; Yan, L.; Zhu, Y.; Ai, F.; Li, H.; Li, Y.; Jiang, Z. The Effect of Immersion Corrosion Time on Electrochemical Corrosion Behavior and the Corrosion Mechanism of EH47 Ship Steel in Seawater. Metals 2021, 11, 1317. [Google Scholar] [CrossRef]
- ANSI/ASHRAE 103-2017; Method for Testing for Annual Fuel Utilization Efficiency of Residential Central Furnaces and Boilers. American National Standards Institute: Washington, DC, USA, 2017.
- Li, X.; Scherf, A.; Heilmaier, M.; Stein, F. The Al-Rich Part of the Fe-Al Phase Diagram. J. Phase Equilibria Diffus. 2016, 37, 162–173. [Google Scholar] [CrossRef]
- Jun, J.; Frith, M.G.; Connatser, R.M.; Keiser, J.R.; Brady, M.P.; Lewis, S.A. Corrosion susceptibility of Cr–Mo steels and ferritic stainless steels in biomass-derived pyrolysis Oil constituents. Energy Fuels 2020, 34, 6220–6228. [Google Scholar] [CrossRef]
- Jun, J.; Warrington, G.L.; Keiser, J.R.; Connatser, R.M.; Sulejmanovic, D.; Brady, M.P.; Kass, M.D. Corrosion of Ferrous Structural Alloys in Biomass Derived Fuels and Organic Acids. Energy Fuels 2021, 35, 12175–12186. [Google Scholar] [CrossRef]
- Li, B.; Fan, L.; Wen, Y.; He, J.; Su, J.; Zhou, S.; Liu, S.; Zhang, Z. Study of Morphology and Corrosion Behavior of Aluminum Coatings on Steel Substrates under Simulated Acid Rain Conditions. Metals 2023, 13, 613. [Google Scholar] [CrossRef]
- Seikh, A.H.; Baig, M.; Singh, J.K.; Mohammed, J.A.; Luqman, M.; Abdo, H.S.; Khan, A.R.; Alharthi, N.H. Microstructural and Corrosion Characteristics of Al-Fe Alloys Produced by High-Frequency Induction-Sintering Process. Coatings 2019, 9, 686. [Google Scholar] [CrossRef]
- Caseres, L.; Sagues, A.A. Corrosion of Aluminized Steel in Scale Forming Waters. In CORROSION; NACE: Bethlehem, PA, USA, 2005; p. NACE-05348. [Google Scholar]
- Frankel, G.S.; Papavinasam, S.; Berke, N.; Brossia, S.; Dean, S.W. Electrochemical Techniques in Corrosion: Status, Limitations, and Needs. J. ASTM Int. 2008, 5, 101241. [Google Scholar] [CrossRef]
65K Btu/h Condensate | 65K Btu/h Post-Corrosion | 80K Btu/h Condensate | 80K Btu/h Post-Corrosion | |
---|---|---|---|---|
Fe (µg/mL) | 0.00 (±0.01) | 0.00 (±0.01) | 0.00 (±0.01) | 0.62 (±0.06) |
Al (µg/mL) | 0.00 (±0.01) | 15.8 (±0.31) | 0.00 (±0.01) | 10.7 (±0.71) |
pH | 2.94 (±0.1) | 5.66 (±0.1) | 3.07 (±0.1) | 5.77 (±0.1) |
Elements | Mass Percent for Each Location | ||||
---|---|---|---|---|---|
Spot A | Spot B | Spot C | Spot D | Spot E | |
Fe | 0.24 | 5 | 27.4 | Balance | Balance |
Al | Balance | 46.3 | 52.8 | - | - |
Si | 2 | 38 | 7.7 | - | - |
Ti | 0.48 | 0.27 | 0.01 | 3.2 | 0.35 |
Ni | 0.24 | 0.51 | 0.68 | 0.33 | 0.43 |
Co | - | 0.19 | 0.49 | 2.2 | 2.11 |
Minor elements | Nb and Zr | Nb | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulejmanovic, D.; Jun, J.; Gao, Z.; Su, Y.-F. Characterization and Electrochemical Analysis of Acidic Condensate-Induced Corrosion on Aluminized Coating on Steel in Residential Heaters. Coatings 2023, 13, 1631. https://doi.org/10.3390/coatings13091631
Sulejmanovic D, Jun J, Gao Z, Su Y-F. Characterization and Electrochemical Analysis of Acidic Condensate-Induced Corrosion on Aluminized Coating on Steel in Residential Heaters. Coatings. 2023; 13(9):1631. https://doi.org/10.3390/coatings13091631
Chicago/Turabian StyleSulejmanovic, Dino, Jiheon Jun, Zhiming Gao, and Yi-Feng Su. 2023. "Characterization and Electrochemical Analysis of Acidic Condensate-Induced Corrosion on Aluminized Coating on Steel in Residential Heaters" Coatings 13, no. 9: 1631. https://doi.org/10.3390/coatings13091631
APA StyleSulejmanovic, D., Jun, J., Gao, Z., & Su, Y.-F. (2023). Characterization and Electrochemical Analysis of Acidic Condensate-Induced Corrosion on Aluminized Coating on Steel in Residential Heaters. Coatings, 13(9), 1631. https://doi.org/10.3390/coatings13091631