The Influence of Homogenous Magnetic Field Intensity on Surface Properties of Ni Thin Films Deposited from Citrate Baths and Their Role in Hydrogen Production
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Methods
2.2. Synthesis of Ni Films
2.3. Electrochemical Investigations of Hydrogen Evolution Reaction (HER)
2.4. Characterization of Ni Films
3. Results and Discussion
3.1. The Impact of the Magnetic Field Intensity on Nickel Coating Morphologies
3.2. XRD Analysis
3.3. The Influence of the Magnetic Field Intensity on the Current Efficiency of the Electrodeposition Process
3.4. The Effect of the Magnetic Flux Density on the Surface Wettability
3.5. The Influence of Magnetic Field Direction on the Roughness of the Deposits
3.6. The Impact of Magnetic Flux Density on the Electrocatalytic Activity of Nickel Coatings Synthesized by the Effect of the Magnetic Field in Perpendicular Direction on the HER and Its Correlation with the Contact Angle
3.7. Durability and Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pogrebnjak, A.D.; Novosad, V. Advances in Thin Films, Nanostructured Materials, and Coatings. In Lecture Notes in Mechanical Engineering, Proceedings of the 2018 International Conference on “Nanomaterials: Applications & Properties, Odesa, Ukraine, 28–30 December 2018; Springer Nature Singapore: Singapore, 2019; ISBN 9789811361326. [Google Scholar]
- Xizhang, C.; Su, C.; Wang, Y.; Siddiquee, A.N.; Sergey, K.; Jayalakshmi, S.; Singh, R.A. Cold Metal Transfer (CMT) Based Wire and Arc Additive Manufacture (WAAM) System. J. Synch. Investig. 2018, 12, 1278–1284. [Google Scholar] [CrossRef]
- Godon, A.; Creus, J.; Feaugas, X.; Conforto, E.; Pichon, L.; Armand, C.; Savall, C. Characterization of Electrodeposited Nickel Coatings from Sulphamate Electrolyte without Additive. Mater. Charact. 2011, 62, 164–173. [Google Scholar] [CrossRef]
- Godon, A.; Creus, J.; Cohendoz, S.; Conforto, E.; Feaugas, X.; Girault, P.; Savall, C. Effects of Grain Orientation on the Hall–Petch Relationship in Electrodeposited Nickel with Nanocrystalline Grains. Scr. Mater. 2010, 62, 403–406. [Google Scholar] [CrossRef]
- Lima-Neto, P.D.; Correia, A.N.; Vaz, G.L.; Casciano, P.N.S. Morphological, Structural, Microhardness and Corrosion Characterisations of Electrodeposited Ni-Mo and Cr Coatings. J. Braz. Chem. Soc. 2010, 21, 1968–1976. [Google Scholar] [CrossRef]
- Beltowska-Lehman, E.; Bigos, A.; Indyka, P.; Kot, M. Electrodeposition and Characterisation of Nanocrystalline Ni–Mo Coatings. Surf. Coat. Technol. 2012, 211, 67–71. [Google Scholar] [CrossRef]
- Halim, J.; Abdel-Karim, R.; El-Raghy, S.; Nabil, M.; Waheed, A. Electrodeposition and Characterization of Nanocrystalline Ni-Mo Catalysts for Hydrogen Production. J. Nanomater. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Doi, T.; Mizumoto, K.; Tanaka, S.; Yamashita, T. Bright Nickel Plating from Nickel Citrate Electroplating Baths. Met. Finish. 2004, 102, 26–35. [Google Scholar] [CrossRef]
- Chaoqun, L.; Xinhai, L.; Zhixing, W.; Huajun, G. Mechanism of Nanocrystalline Nickel Electrodeposition from Novel Citrate Bath. Rare Met. Mater. Eng. 2015, 44, 1561–1567. [Google Scholar] [CrossRef]
- Bund, A.; Ispas, A. Influence of a Static Magnetic Field on Nickel Electrodeposition Studied Using an Electrochemical Quartz Crystal Microbalance, Atomic Force Microscopy and Vibrating Sample Magnetometry. J. Electroanal. Chem. 2005, 575, 221–228. [Google Scholar] [CrossRef]
- Feiler, A.A.; Davies, P.T.; Vincent, B. Adsorption of Anionic Gold Nanoparticles by a Layer of Cationic Microgel Particles Deposited on a Gold-Coated, Quartz Surface: Studied by Quartz Crystal Microbalance and Atomic Force Microscopy. Soft Matter 2011, 7, 6660. [Google Scholar] [CrossRef]
- Chopart, J.P.; Douglade, J.; Fricoteaux, P.; Olivier, A. Electrodeposition and Electrodissolution of Copper with a Magnetic Field: Dynamic and Stationary Investigations. Electrochim. Acta 1991, 36, 459–463. [Google Scholar] [CrossRef]
- Lee, J.; Ragsdale, S.R.; Gao, X.; White, H.S. Magnetic Field Control of the Potential Distribution and Current at Microdisk Electrodes. J. Electroanal. Chem. 1997, 422, 169–177. [Google Scholar] [CrossRef]
- O’Brien, R.N.; Santhanam, K.S.V. Magnetic Field Assisted Convection in an Electrolyte of Nonuniform Magnetic Susceptibility. J. Appl. Electrochem. 1997, 27, 573–578. [Google Scholar] [CrossRef]
- Waskaas, M.; Kharkats, Y.I. Magnetoconvection Phenomena: A Mechanism for Influence of Magnetic Fields on Electrochemical Processes. J. Phys. Chem. B 1999, 103, 4876–4883. [Google Scholar] [CrossRef]
- Long, Q.; Zhong, Y.; Wu, J. Effect of Magnetic Fields on the Behavior of Iron Electrodeposition. Int. J. Electrochem. Sci. 2020, 15, 6955–6968. [Google Scholar] [CrossRef]
- Chiba, A.; Hosokawa, A.; Ogawa, T. Inhibition of Dendrites of Tin from Tin (II) Sulphate- Sulphuric Acid by Magnetic Fields. Surf. Coat. Technol. 1986, 27, 131–136. [Google Scholar] [CrossRef]
- Devos, O.; Olivier, A.; Chopart, J.P.; Aaboubi, O.; Maurin, G. Magnetic Field Effects on Nickel Electrodeposition. J. Electrochem. Soc. 1998, 145, 401–405. [Google Scholar] [CrossRef]
- Chouchane, S.; Levesque, A.; Zabinski, P.; Rehamnia, R.; Chopart, J.-P. Electrochemical Corrosion Behavior in NaCl Medium of Zinc–Nickel Alloys Electrodeposited under Applied Magnetic Field. J. Alloys Compd. 2010, 506, 575–580. [Google Scholar] [CrossRef]
- Danilyuk, A.L.; Kurmashev, V.I.; Matyushkov, A.L. Magnetostatic Field Influence on Electrodeposition on Metal Films. Thin Solid. Film. 1990, 189, 247–255. [Google Scholar] [CrossRef]
- Lasia, A. Mechanism and Kinetics of the Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2019, 44, 19484–19518. [Google Scholar] [CrossRef]
- Chen, L.; Lasia, A. A Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. J. Electrochem. Soc. 1991, 138, 3321. [Google Scholar] [CrossRef]
- Liang, Z.; Ahn, H.S.; Bard, A.J. A Study of the Mechanism of the Hydrogen Evolution Reaction on Nickel by Surface Interrogation Scanning Electrochemical Microscopy. J. Am. Chem. Soc. 2017, 139, 4854–4858. [Google Scholar] [CrossRef] [PubMed]
- Kutyła, D.; Kołczyk-Siedlecka, K.; Kwiecińska, A.; Skibińska, K.; Kowalik, R.; Żabiński, P. Preparation and Characterization of Electrodeposited Ni-Ru Alloys: Morphological and Catalytic Study. J. Solid. State Electrochem. 2019, 23, 3089–3097. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, J.; Xiao, W.; Yan, C. Electrodeposition of Graded Ni-S Film for Hydrogen Evolution Reaction. Mater. Lett. 2017, 193, 77–80. [Google Scholar] [CrossRef]
- Elsharkawy, S.; Kutyła, D.; Zabinski, P. The Influence of the Magnetic Field on Ni Thin Film Preparation by Electrodeposition Method and Its Electrocatalytic Activity towards Hydrogen Evolution Reaction. Coatings 2023, 13, 1816. [Google Scholar] [CrossRef]
- El-Hallag, I.; Elsharkawy, S.; Hammad, S. The Effect of Electrodeposition Potential on Catalytic Properties of Ni Nanoparticles for Hydrogen Evolution Reaction (HER) in Alkaline Media. J. Appl. Electrochem. 2022, 52, 907–918. [Google Scholar] [CrossRef]
- El-Esawy, M.A.; Elsharkawy, S.; Youssif, M.M.; Raafat Tartour, A.; Ramadan Elsharkawy, F.; Ahmed Saad Badr, S.; Elghoraby, A.M.; Elsayed Gad, M.; Etman, A.E.; Essam Mahmoud, F.; et al. Recent Advances of Green Nanoparticles in Energy and Biological Applications. Mater. Today 2023, 72, 117–139. [Google Scholar] [CrossRef]
- Skibińska, K.; Elsharkawy, S.; Kula, A.; Kutyła, D.; Żabiński, P. Influence of Substrate Preparation on the Catalytic Activity of Conical Ni Catalysts. Coatings 2023, 13, 2067. [Google Scholar] [CrossRef]
- Elsharkawy, S.; Hammad, S.; El-hallaga, I. Electrodeposition of Ni Nanoparticles from Deep Eutectic Solvent and Aqueous Solution Promoting High Stability Electrocatalyst for Hydrogen and Oxygen Evolution Reactions. J. Solid. State Electrochem. 2022, 26, 1501–1517. [Google Scholar] [CrossRef]
- Kawondera, R.; Bonechi, M.; Maccioni, I.; Giurlani, W.; Salzillo, T.; Venuti, E.; Mishra, D.; Fontanesi, C.; Innocenti, M.; Mehlana, G.; et al. Chiral “Doped” MOFs: An Electrochemical and Theoretical Integrated Study. Front. Chem. 2023, 11, 1215619. [Google Scholar] [CrossRef]
- Giurlani, W.; Fidi, A.; Anselmi, E.; Pizzetti, F.; Bonechi, M.; Carretti, E.; Lo Nostro, P.; Innocenti, M. Specific Ion Effects on Copper Electroplating. Colloids Surf. B Biointerfaces 2023, 225, 113287. [Google Scholar] [CrossRef] [PubMed]
- Darband, G.B.; Aliofkhazraei, M.; Sabour Rouhaghdam, A. Nickel Nanocones as Efficient and Stable Catalyst for Electrochemical Hydrogen Evolution Reaction. Int. J. Hydrog. Energy 2017, 42, 14560–14565. [Google Scholar] [CrossRef]
- Lee, J.M.; Jung, K.K.; Lee, S.H.; Ko, J.S. One-Step Fabrication of Nickel Nanocones by Electrodeposition Using CaCl2·2H2O as Capping Reagent. Appl. Surf. Sci. 2016, 369, 163–169. [Google Scholar] [CrossRef]
- Song, F.; Li, W.; Yang, J.; Han, G.; Liao, P.; Sun, Y. Interfacing Nickel Nitride and Nickel Boosts Both Electrocatalytic Hydrogen Evolution and Oxidation Reactions. Nat. Commun. 2018, 9, 4531. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Feng, T.; Wang, L.; Yuan, W.; Huang, Q.; Guo, Y. Electronically Modulated Nickel Boron by CeOx Doping as a Highly Efficient Electrocatalyst towards Overall Water Splitting. Dalton Trans. 2022, 51, 675–684. [Google Scholar] [CrossRef]
- Batugedara, T.N.; Brock, S.L. A Little Nickel Goes a Long Way: Ni Incorporation into Rh2P for Stable Bifunctional Electrocatalytic Water Splitting in Acidic Media. ACS Mater. Au 2023, 3, 299–309. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Ji, S.; Wang, X.; Zhou, P.; Huo, S.; Linkov, V.; Wang, R. A High Faraday Efficiency NiMoO4 Nanosheet Array Catalyst by Adjusting the Hydrophilicity for Overall Water Splitting. Chem. A Eur. J. 2020, 26, 12067–12074. [Google Scholar] [CrossRef]
- Elsharkawy, S.; Kutyła, D.; Marzec, M.M.; Zabinski, P. Electrodeposition of Hydrophobic Ni Thin Films from Different Baths under the Influence of the Magnetic Field as Electrocatalysts for Hydrogen Production. Int. J. Hydrog. Energy 2024, 61, 873–882. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Yuwasa, K.; Hirayama, K. X-Ray Investigation of the Absorption of Hydrogen by Several Palladium and Nickel Solid Solution Alloys. J. Less Common. Met. 1982, 88, 115–124. [Google Scholar] [CrossRef]
- Elhamid, M.H.A.; Ateya, B.G.; Pickering, H.W. Effect of Benzotriazole on the Hydrogen Absorption by Iron. J. Electrochem. Soc. 1997, 144, L58–L61. [Google Scholar] [CrossRef]
- Song, K.-D.; Kim, K.B.; Han, S.H.; Lee, H.K. A Study on Effect of Hydrogen Reduction Reaction on the Initial Stage of Ni Electrodeposition Using EQCM. Electrochem. Commun. 2003, 5, 460–466. [Google Scholar] [CrossRef]
- Lioubashevski, O.; Katz, E.; Willner, I. Magnetic Field Effects on Electrochemical Processes: A Theoretical Hydrodynamic Model. J. Phys. Chem. B 2004, 108, 5778–5784. [Google Scholar] [CrossRef]
- Aaboubi, O.; Chopart, J.P.; Douglade, J.; Olivier, A.; Gabrielli, C.; Tribollet, B. Magnetic Field Effects on Mass Transport. J. Electrochem. Soc. 1990, 137, 1796–1804. [Google Scholar] [CrossRef]
- Budevski, E.; Staikov, G.; Lorenz, W.J. Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition, 1st ed.; Wiley: Hoboken, NJ, USA, 1996; ISBN 978-3-527-29422-0. [Google Scholar]
Ni Films | Roughness (nm) |
---|---|
Absence of B | 141 |
B⟂ | 29 |
B‖ | 101 |
Ni Thin Film at Different Magnetic Flux Densities | η10 (mV) | Tafel Slope (mV dec−1) | Contact Angle | j0 (A cm−2) | α |
---|---|---|---|---|---|
0.1 T | −295 | 274 | 61 | 1 × 10−1 | 0.09 |
0.2 T | −296 | 199 | 68 | 4.9 × 10−1 | 0.135 |
0.3 T | −297 | 204 | 68.4 | 4.6 × 10−1 | 0.132 |
0.5 T | −240 | 102 | 72 | 20 × 10−1 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsharkawy, S.; Kutyła, D.; Żabiński, P. The Influence of Homogenous Magnetic Field Intensity on Surface Properties of Ni Thin Films Deposited from Citrate Baths and Their Role in Hydrogen Production. Coatings 2024, 14, 1459. https://doi.org/10.3390/coatings14111459
Elsharkawy S, Kutyła D, Żabiński P. The Influence of Homogenous Magnetic Field Intensity on Surface Properties of Ni Thin Films Deposited from Citrate Baths and Their Role in Hydrogen Production. Coatings. 2024; 14(11):1459. https://doi.org/10.3390/coatings14111459
Chicago/Turabian StyleElsharkawy, Safya, Dawid Kutyła, and Piotr Żabiński. 2024. "The Influence of Homogenous Magnetic Field Intensity on Surface Properties of Ni Thin Films Deposited from Citrate Baths and Their Role in Hydrogen Production" Coatings 14, no. 11: 1459. https://doi.org/10.3390/coatings14111459
APA StyleElsharkawy, S., Kutyła, D., & Żabiński, P. (2024). The Influence of Homogenous Magnetic Field Intensity on Surface Properties of Ni Thin Films Deposited from Citrate Baths and Their Role in Hydrogen Production. Coatings, 14(11), 1459. https://doi.org/10.3390/coatings14111459