Application of Optical Fiber Sensing Technology and Coating Technology in Blood Component Detection and Monitoring
Abstract
:1. Introduction
2. The Basic Principle of Optical Fiber Sensors
3. Application of Optical Fiber Sensors in Blood Detection
3.1. Blood Glucose Concentration
3.2. Blood pH
3.3. Protein in Blood
3.4. Blood Physical Characteristics
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Ding, L.Y.; Zhang, Y.M.; Wu, T. A Cholesterol Optical Fiber Sensor Based on CQDs-COD/CA Composite. IEEE Sens. J. 2022, 22, 6247–6255. [Google Scholar] [CrossRef]
- Fasseaux, H.; Loyez, M.; Caucheteur, C. Plasmonic optical fiber for insulin detection through phase analysis. In Proceedings of the European Workshop on Optical Fibre Sensors (EWOFS 2023), Mons, Belgium, 23–26 May 2023; p. 1264311. [Google Scholar] [CrossRef]
- Parati, G.; Ochoa, J.E.; Lombardi, C.; Bilo, G. Blood Pressure Variability: Assessment, Predictive Value, and Potential as a Therapeutic Target. Curr. Hypertens. Rep. 2015, 17, 23. [Google Scholar] [CrossRef]
- Perez, J.L.C.; Gutiérrez-Gutiérrez, J.; Mayoral, C.P.; Pérez-Campos, E.L.; Canseco, M.D.P.; Carrillo, L.T.; Mayoral, L.P.C.; Treviño, M.V.; Apreza, E.L.; Laguna, R.R. Fiber Optic Sensors: A Review for Glucose Measurement. Biosensors 2021, 11, 61. [Google Scholar] [CrossRef]
- Legendre, J.P.; Forester, G.V. A fibre optic sensor of physiological parameters. Proc. SPIE-Int. Soc. Opt. Eng. 1986, 661, 218–223. [Google Scholar] [CrossRef]
- Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G.; Schneider, P.; Lieberman, D.; Cheung, T. Fiber optic based heart-rate and pulse pressure shape monitor. In Proceedings of the Conference on Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XII, San Francisco, CA, USA, 21–22 January 2012. [Google Scholar]
- Starodumov, A.N.; Zenteno, L.A.; Monzon, D.; de la Rose, E. Fiber Sagnac interferometer temperature sensor. Appl. Phys. Lett. 1997, 70, 19–21. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; He, Z. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers. Opt. Express 2017, 25, 21914–21925. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yam, S.S.H.; Loock, H.-P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008, 20, 1387–1389. [Google Scholar] [CrossRef]
- Fan, Z.; Diao, X.; Hu, K.; Zhang, Y.; Huang, Z.; Kang, Y.; Yan, H. Structural health monitoring of metal-to-glass-ceramics penetration during thermal cycling aging using femto-laser inscribed FBG sensors. Sci. Rep. 2020, 10, 12330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tong, R.-J.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, Z.; Wen, X.; Zhang, D. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation. Measurement 2013, 46, 1041–1046. [Google Scholar] [CrossRef]
- Sun, M.-Y.; Jiang, H.-T.; Shi, B.; Zhou, G.-Y.; Inyang, H.I.; Feng, C.-X. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer. Measurement 2019, 140, 526–537. [Google Scholar] [CrossRef]
- Erdody, S.; Korposh, S.; Lee, S.W.; Morgan, S.P. Long period grating fibre operating in visible range coated with porphyrin based thin film as an ammonia aqueous sensor. In Proceedings of the European Workshop on Optical Fibre Sensors (EWOFS 2023), Mons, Belgium, 23–26 May 2023; p. 126432R. [Google Scholar] [CrossRef]
- Deleau, C.; Seat, H.C.; Surre, F.; Carcenac, F.; Calmon, P.-F.; Bernal, O. Gas Sensor Based on Silicon Nitride Integrated Long Period Grating. In Proceedings of the IEEE Sensors Conference, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar]
- Saleh, A.; Mekhrengin, M.; Donsberg, T.; Kaariainen, T.; Genoud, G.; Toivonen, J. Mid-infrared hyperspectral sensor based on MEMS Fabry-Perot interferometer for stand-off sensing applications. Sci. Rep. 2022, 12, 19392. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bu, J.; Li, W.; Lv, J.; Wang, X.; Hu, K.; Yu, Y. Fiber optic Fabry-Perot sensor that can amplify ultrasonic wave for an enhanced partial discharge detection. Sci. Rep. 2021, 11, 8661. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Hu, P.; Chan, C.C.; Shum, P. Optical Fiber Humidity Sensor Based on Michelson Interferometric Structures. In Proceedings of the IEEE 6th International Conference on Advanced Infocomm Technology (ICAIT), Hsinchu, Taiwan, 6–9 July 2013; pp. 116–117. [Google Scholar]
- Yuan, L.; Yang, J.; Liu, Z.; Sun, J. In-fiber integrated Michelson interferometer. Opt. Lett. 2006, 31, 2692–2694. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, X.; Yang, J.; Tao, C.; Guo, X.; Bao, H.; Yin, Y.; Chen, H.; Zhu, Y. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing with High Sensitivity. Sci. Rep. 2017, 7, 44994. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wen, C. Temperature and strain sensing properties of the zinc coated FBG. Optik 2016, 127, 6463–6469. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Hu, Y.; Zeng, L.; Liu, Q.; Duan, J.a. Highly-sensitive fiber Bragg grating temperature sensors with metallic coatings. Optik 2022, 262, 169337. [Google Scholar] [CrossRef]
- Wang, J.N.; Zhou, X.L.; Miao, Y.F.; Jiang, G.C.; Tong, L.L.; Tao, P.C.; Yu, Q.X.; Peng, W. Integrated and compact fiber-optic conductivity-temperature-depth (CTD) sensor for marine detection. Opt. Laser Technol. 2023, 164, 109523. [Google Scholar] [CrossRef]
- Urruti, E.H.; Wahl, J.F. Coatings affect fiber performance in smart-skin sensing. Laser Focus World 1990, 26, 169–170. [Google Scholar]
- Orcel, G. Optical fiber coatings for sensing/smart skins applications. Fiber Optic Sensor-Based Smart Materials and Structures. In Proceedings of the Presented at the Fifth Annual Smart Materials and Structures Workshop, Blacksburg, Virginia, 15–16 April 1992; pp. 7–12. [Google Scholar]
- Minghong, Y.; Chongjie, Q.; Jixiang, D.; Dongwen, L.; Jianguang, T. Optical fiber sensors with coatings as sensitive elements. In Proceedings of the Asia Communications and Photonics Conference, Shanghai, China, 11–14 November 2014; p. 3. [Google Scholar]
- Liu, Y.; Jing, Z.; Liu, Q.; Li, A.; Lee, A.; Cheung, Y.; Zhang, Y.; Peng, W. All-silica fiber-optic temperature-depth-salinity sensor based on cascaded EFPIs and FBG for deep sea exploration. Opt. Express 2021, 29, 23953–23966. [Google Scholar] [CrossRef] [PubMed]
- Massaroni, C.; Zaltieri, M.; Lo Presti, D.; Nicolo, A.; Tosi, D.; Schena, E. Fiber Bragg Grating Sensors for Cardiorespiratory Monitoring: A Review. IEEE Sens. J. 2021, 21, 14069–14080. [Google Scholar] [CrossRef]
- Macheso, P.S.; Thulu, F.G.D. Roles of Optical Fiber Sensors in the Internet of Things: Applications and Challenges; Springer: Berlin/Heidelberg, Germany, 2023; pp. 923–933. [Google Scholar]
- Cutolo, A.; Bernini, R.; Berruti, G.M.; Breglio, G.; Bruno, F.A.; Buontempo, S.; Catalano, E.; Consales, M.; Coscetta, A.; Cusano, A.; et al. Innovative Photonic Sensors for Safety and Security, Part II: Aerospace and Submarine Applications. Sensors 2023, 23, 2417. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, X.Z.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C.; Beavers, D.P.; Bertoni, A.G.; Bigger, J.T.; Buse, J.B.; Craven, T.E.; Cushman, W.C.; Fonseca, V.; Geller, N.L.; Giddings, S.J.; et al. Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes. Diabetes Care 2016, 39, 701–708. [Google Scholar] [CrossRef]
- Zelnick, L.R.; Batacchi, Z.O.; Ahmad, I.; Dighe, A.; Little, R.R.; Trence, D.L.; Hirsch, I.B.; de Boer, I.H. Continuous Glucose Monitoring and Use of Alternative Markers To Assess Glycemia in Chronic Kidney Disease. Diabetes Care 2020, 43, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Nichols, S.P.; Koh, A.; Storm, W.L.; Shin, J.H.; Schoenfisch, M.H. Biocompatible Materials for Continuous Glucose Monitoring Devices. Chem. Rev. 2013, 113, 2528–2549. [Google Scholar] [CrossRef]
- Levitt, D.L.; Silver, K.D.; Spanakis, E.K. Inpatient Continuous Glucose Monitoring and Glycemic Outcomes. J. Diabetes Sci. Technol. 2017, 11, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Oliver, N.S.; Toumazou, C.; Cass, A.E.G.; Johnston, D.G. Glucose sensors: A review of current and emerging technology. Diabet. Med. 2009, 26, 197–210. [Google Scholar] [CrossRef]
- Pai, P.P.; Sanki, P.K.; Banerjee, S. A Photoacoustics based Continuous Non-Invasive Blood Glucose Monitoring System. In Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MEMEA 2015) Proceedings, Politecnico Torino, Torino, Italy, 7–9 May 2015; pp. 106–111. [Google Scholar]
- Sapozhnikova, V.V.; Kuranov, R.V.; Cicenaite, I.; Esenaliev, R.O.; Prough, D.S. Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe. J. Biomed. Opt. 2008, 13, 021112. [Google Scholar] [CrossRef]
- He, Y.; Wang, X.; Sun, J.; Jiao, S.; Chen, H.; Gao, F.; Wang, L. Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system. Anal. Chim. Acta 2014, 810, 71–78. [Google Scholar] [CrossRef]
- Park, S.; Boo, H.; Chung, T.D. Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 2006, 556, 46–57. [Google Scholar] [CrossRef]
- Wilson, D.M.; Beck, R.W.; Tamborlane, W.V.; Dontchev, M.J.; Kollman, C.; Chase, P.; Fox, L.A.; Ruedy, K.J.; Tsalikian, E.; Weinzimer, S.A.; et al. The accuracy of the FreeStyle navigator continuous glucose monitoring system in children with type 1 diabetes. Diabetes Care 2007, 30, 59–64. [Google Scholar] [CrossRef]
- Weinstein, R.L.; Bugler, J.R.; Schwartz, S.L.; Peyser, T.A.; Brazg, R.L.; McGarraugh, G.V. Accuracy of the 5-day freestyle navigator continuous glucose monitoring system—Comparison with frequent laboratory reference measurements. Diabetes Care 2007, 30, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, G.; Tan, X.; Hou, K.; Meng, Q.; Zhao, P.; Wang, S.; Zhang, J.; Zhou, Z.; Chen, T.; et al. Integrated dynamic wet spinning of core-sheath hydrogel fibers for optical-to-brain/tissue communications. Natl. Sci. Rev. 2021, 8, nwaa209. [Google Scholar] [CrossRef]
- Chudnovskii, V.; Mayor, A.; Kiselev, A.; Yusupov, V. Foaming of blood in endovenous laser treatment. Lasers Med. Sci. 2018, 33, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Bian, S.; Shang, M.; Sawan, M. Rapid biosensing SARS-CoV-2 antibodies in vaccinated healthy donors. Biosens. Bioelectron. 2022, 204, 114054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, K.; Li, W.T.; Ning, X.; Li, Y.R.; Qian, Z.Y. Design of blood flow imaging system based on fiber optic gastroscope. Chin. Med. Equip. J. 2020, 41, 13–17. [Google Scholar] [CrossRef]
- Peterson, J.I.; Goldstein, S.R. A miniature fiberoptic pH sensor potentially suitable for glucose measurements. Diabetes Care 1982, 5, 272–274. [Google Scholar] [CrossRef]
- Leonhardt, S.; Leonhardt. Portable Assembly to Detect and Correct Blood Sugar Level. DE19858426-A1; WO200103572-A1; DE19858426-C2; EP1194069-A1; US2002128543-A1; US6885881-B2; EP1194069-B1; DE59913262-G. Available online: https://europepmc.org/article/PAT/DE19858426 (accessed on 25 January 2024).
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.B.; Li, J.H. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, K.; Wang, C.; Sun, Q.; Yin, G.; Tai, Z.; Wilson, K.; Zhao, J.; Zhang, L. Label-free glucose biosensor based on enzymatic graphene oxide-functionalized tilted fiber grating. Sens. Actuators B-Chem. 2018, 254, 1033–1039. [Google Scholar] [CrossRef]
- Panda, A.; Pukhrambam, P.D.; Keiser, G. Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl. Phys. A-Mater. Sci. Process. 2020, 126, 153. [Google Scholar] [CrossRef]
- Chen, X.Y.; Lin, W.W.; Xu, P.; Chen, L.X.; Meng, W.W.; Hu, X.H.; Qu, H.; Cui, Y.K.; Sun, J.H. FM-Level Detection of Glucose Using a Grating Based Sensor Enhanced With Graphene Oxide. J. Light. Technol. 2023, 41, 4145–4152. [Google Scholar] [CrossRef]
- Mader, H.S.; Wolfbeis, O.S. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta 2008, 162, 1–34. [Google Scholar] [CrossRef]
- Shiino, D.; Murata, Y.; Kataoka, K.; Koyama, Y.; Yokoyama, M.; Okano, T.; Sakurai, Y. Preparation and characterization of a glucose-responsive insulin-releasing polymer device. Biomaterials 1994, 15, 121–128. [Google Scholar] [CrossRef]
- Samoei, G.K.; Wang, W.; Escobedo, J.O.; Xu, X.; Schneider, H.-J.; Cook, R.L.; Strongin, R.M. A chemomechanical polymer that functions in blood plasma with high glucose selectivity. Angew. Chem.-Int. Ed. 2006, 45, 5319–5322. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.R.; Watekar, A.V.; Kang, S.W. Fiber-Optic Biosensor to Detect pH and Glucose. IEEE Sens. J. 2018, 18, 1528–1538. [Google Scholar] [CrossRef]
- Alexeev, V.L.; Sharma, A.C.; Goponenko, A.V.; Das, S.; Lednev, I.K.; Wilcox, C.S.; Finegold, D.N.; Asher, S.A. High ionic strength glucose-sensing photonic crystal. Anal. Chem. 2003, 75, 2316–2323. [Google Scholar] [CrossRef]
- Li, Y.J.; Luo, S.T.; Gui, Y.Q.; Wang, X.; Tian, Z.Y.; Yu, H.H. Difunctional Hydrogel Optical Fiber Fluorescence Sensor for Continuous and Simultaneous Monitoring of Glucose and pH. Biosensors 2023, 13, 287. [Google Scholar] [CrossRef]
- Sridevi, S.; Vasu, K.S.; Sampath, S.; Asokan, S.; Sood, A.K. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide. J. Biophotonics 2016, 9, 760–769. [Google Scholar] [CrossRef]
- Tao, M.; Jin, Y.; Gu, N.; Huang, L. A method to control the fabrication of etched optical fiber probes with nanometric tips. J. Opt. 2010, 12, 015503. [Google Scholar] [CrossRef]
- Koo, K.N.; Ismail, A.F.; Othman, M.H.D.; Tai, Z.S.; Abu Bakar, M.A.; Rahman, M.A.; Samavati, A. Tailoring surface structure and diameter of etched fiber Bragg grating for high strain sensing. Opt. Laser Technol. 2023, 157, 108693. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Hameed, M.F.O.; Areed, N.F.F.; El-Okr, M.M.; Obayya, S.S.A. Analysis of Highly Sensitive Photonic Crystal Biosensor for Glucose Monitoring. Appl. Comput. Electromagn. Soc. J. 2016, 31, 836–842. [Google Scholar]
- Li, X.G.; Gong, P.Q.; Zhang, Y.A.; Zhou, X. Label-Free Micro Probe Optical Fiber Biosensor for Selective and Highly Sensitive Glucose Detection. IEEE Trans. Instrum. Meas. 2022, 71, 7008608. [Google Scholar] [CrossRef]
- Cunha, C.; Assunçao, A.S.; Monteiro, C.S.; Leitao, C.; Mendes, J.P.; Silva, S.; Frazao, O.; Novais, S. Transmissive glucose concentration plasmonic Au sensor based on unclad optical fiber. In Proceedings of the IEEE 7th Portuguese Meeting on Bioengineering (ENBENG), Porto, Portugal, 22–23 June 2023; pp. 13–16. [Google Scholar]
- Li, Y.P.; Ma, H.; Gan, L.; Liu, Q.; Yan, Z.J.; Liu, D.M.; Sun, Q.Z. Immobilized optical fiber microprobe for selective and high sensitive glucose detection. Sens. Actuators B-Chem. 2018, 255, 3004–3010. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Zhang, F.; Yu, S. Probing the binding affinity of plasma proteins adsorbed on Au nanoparticles. Nanoscale 2017, 9, 4787–4792. [Google Scholar] [CrossRef] [PubMed]
- Li, D.C.; Yu, S.L.; Sun, C.Y.; Zou, C.W.; Yu, H.X.; Xu, K.X. U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring. Biosens. Bioelectron. 2015, 72, 370–375. [Google Scholar] [CrossRef]
- Yin, M.J.; Huang, B.B.; Gao, S.R.; Zhang, A.P.; Ye, X.S. Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection. Biomed. Opt. Express 2016, 7, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B (Solid State) 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Frost, M.C.; Meyerhoff, M.E. Real-Time Monitoring of Critical Care Analytes in the Bloodstream with Chemical Sensors: Progress and Challenges. Annu. Rev. Anal. Chem. 2015, 8, 171–192. [Google Scholar] [CrossRef]
- Liu, R.; Liu, L.; Liang, J.; Wang, Y.; Wei, Y.; Gao, F.; Gao, L.; Gao, X. Detection of pH Change in Cytoplasm of Live Myocardial Ischemia Cells via the ssDNA-SWCNTs Nanoprobes. Anal. Chem. 2014, 86, 3048–3052. [Google Scholar] [CrossRef]
- Ma, W.; Yan, L.a.; He, X.; Qing, T.; Lei, Y.; Qiao, Z.; He, D.; Huang, K.; Wang, K. Hairpin-Contained i-Motif Based Fluorescent Ratiometric Probe for High-Resolution and Sensitive Response of Small pH Variations. Anal. Chem. 2018, 90, 1889–1896. [Google Scholar] [CrossRef]
- Wang, J.; Geng, Y.; Shen, Y.; Shi, W.; Xu, W.; Xu, S. SERS-active fiber tip for intracellular and extracellular pH sensing in living single cells. Sens. Actuators B-Chem. 2019, 290, 527–534. [Google Scholar] [CrossRef]
- Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 2003, 83, 1183–1221. [Google Scholar] [CrossRef]
- Pullano, S.A.; Critello, C.D.; Mahbub, I.; Tasneem, N.T.; Shamsir, S.; Islam, S.K.; Greco, M.; Fiorillo, A.S. EGFET-Based Sensors for Bioanalytical Applications: A Review. Sensors 2018, 18, 4042. [Google Scholar] [CrossRef]
- Vivaldi, F.; Santalucia, D.; Poma, N.; Bonini, A.; Salvo, P.; Del Noce, L.; Melai, B.; Kirchhain, A.; Kolivoska, V.; Sokolova, R.; et al. A voltammetric pH sensor for food and biological matrices (vol 322, 128650, 2020). Sens. Actuators B-Chem. 2021, 330, 129176. [Google Scholar] [CrossRef]
- Pastore, A.; Badocco, D.; Pastore, P. Reversible and high accuracy pH colorimetric sensor array based on a single acid-base indicator working in a wide pH interval. Talanta 2020, 219, 121251. [Google Scholar] [CrossRef]
- Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K. Ratiometric Fluorescent Sensing of pH Values in Living Cells by Dual-Fluorophore-Labeled i-Motif Nanoprobes. Anal. Chem. 2015, 87, 8724–8731. [Google Scholar] [CrossRef]
- Wencel, D.; Kaworek, A.; Abel, T.; Efremov, V.; Bradford, A.; Carthy, D.; Coady, G.; McMorrow, R.C.N.; McDonagh, C. Optical Sensor for Real-Time pH Monitoring in Human Tissue. Small 2018, 14, 1803627. [Google Scholar] [CrossRef]
- Baldini, F.; Mignani, A.G. Optical-fiber medical sensors. Mrs Bull. 2002, 27, 383–387. [Google Scholar] [CrossRef]
- Aigner, D.; Ungerboeck, B.; Mayr, T.; Saf, R.; Klimant, I.; Borisov, S.M. Fluorescent materials for pH sensing and imaging based on novel 1,4-diketopyrrolo- 3,4-c pyrrole dyes. J. Mater. Chem. C 2013, 1, 5685–5693. [Google Scholar] [CrossRef]
- Richter, A.; Paschew, G.; Klatt, S.; Lienig, J.; Arndt, K.-F.; Adler, H.-J.P. Review on hydrogel-based pH sensors and microsensors. Sensors 2008, 8, 561–581. [Google Scholar] [CrossRef]
- Asare, K.P.; Zniber, M.; Zouheir, M.; Wang, L.; Wang, X.; Tan-Phat, H. Luciferin-based fluorescent hydrogel as a pH sensor. Mrs Commun. 2022, 12, 90–94. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Valant, M. Covalent Organic Polymers and Frameworks for Fluorescence-Based Sensors. Acs Sens. 2021, 6, 1461–1481. [Google Scholar] [CrossRef]
- Mohammadnia, M.S.; Roghani-Mamaqani, H.; Mardani, H.; Rezvani-Moghaddam, A.; Hemmati, S.; Salami-Kalajahi, M. Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydr. Polym. 2022, 294, 119768. [Google Scholar] [CrossRef]
- Di Costanzo, L.; Panunzi, B. Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials. Molecules 2021, 26, 2952. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G.U.; Tamayol, A.; Zhang, Y.S.; Mahmood, I.; Yang, S.-A.; Kim, K.S.; et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater. 2017, 29, 1606380. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D.; et al. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photonics Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Peterson, J.I.; Goldstein, S.R.; Fitzgerald, R.V.; Buckhold, D.K. Fiber optic pH probe for physiological use. Anal. Chem. 1980, 52, 864–869. [Google Scholar] [CrossRef]
- Jin, W.; Wu, L.; Song, Y.; Jiang, J.; Zhu, X.; Yang, D.; Bai, C. Continuous Intra-Arterial Blood pH Monitoring by a Fiber-Optic Fluorosensor. IEEE Trans. Biomed. Eng. 2011, 58, 1232–1238. [Google Scholar] [CrossRef]
- Levy, R.; Guignon, E.F.; Cobane, S.; St. Louis, E.; Fernandez, S.M. Compact, rugged and inexpensive frequency-domain fluorometer. Proc. SPIE-Int. Soc. Opt. Eng. 1997, 2980, 81–89. [Google Scholar] [CrossRef]
- Ehrlich, K.; Kufcsak, A.; Krstajic, N.; Henderson, R.K.; Thomson, R.R.; Tanner, M.G. Fibre optic time-resolved spectroscopy using CMOS-SPAD arrays. In Proceedings of the Conference on Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVII, San Francisco, CA, USA, 28–29 January 2017. [Google Scholar]
- Podrazky, O.; Mrázek, J.; Probostová, J.; Vytykácová, S.; Kasík, I.; Pitrová, S.; Jasim, A.A. Ex-Vivo Measurement of the pH in Aqueous Humor Samples by a Tapered Fiber-Optic Sensor. Sensors 2021, 21, 5075. [Google Scholar] [CrossRef]
- Zhao, Q.; Yin, M.; Zhang, A.P.; Prescher, S.; Antonietti, M.; Yuan, J. Hierarchically Structured Nanoporous Poly(Ionic Liquid) Membranes: Facile Preparation and Application in Fiber-Optic pH Sensing. J. Am. Chem. Soc. 2013, 135, 5549–5552. [Google Scholar] [CrossRef]
- Zhao, Q.; Dunlop, J.W.C.; Qiu, X.; Huang, F.; Zhang, Z.; Heyda, J.; Dzubiella, J.; Antonietti, M.; Yuan, J. An instant multi-responsive porous polymer actuator driven by solvent molecule sorption. Nat. Commun. 2014, 5, 4293. [Google Scholar] [CrossRef]
- Zhao, C.; Nie, S.; Tang, M.; Sun, S. Polymeric pH-sensitive membranes-A review. Prog. Polym. Sci. 2011, 36, 1499–1520. [Google Scholar] [CrossRef]
- Chiang, E.N.; Dong, R.; Ober, C.K.; Baird, B.A. Cellular Responses to Patterned Poly(acrylic acid) Brushes. Langmuir 2011, 27, 7016–7023. [Google Scholar] [CrossRef]
- Yin, M.-J.; Yao, M.; Gao, S.; Zhang, A.P.; Tam, H.-Y.; Wai, P.-K.A. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors. Adv. Mater. 2016, 28, 1394–1399. [Google Scholar] [CrossRef]
- Gu, B.; Yin, M.; Zhang, A.P.; Qian, J.; He, S. Biocompatible Fiber-Optic pH Sensor Based on Optical Fiber Modal Interferometer Self-Assembled With Sodium Alginate/Polyethylenimine Coating. IEEE Sens. J. 2012, 12, 1477–1482. [Google Scholar] [CrossRef]
- Lopez Aldabaa, A.; Gonzalez-Vila, A.; Debliquy, M.; Lopez-Amo, M.; Caucheteur, C.; Lahem, D. Polyaniline-coated tilted fiber Bragg gratings for pH sensing. Sens. Actuators B-Chem. 2018, 254, 1087–1093. [Google Scholar] [CrossRef]
- Mishra, S.K.; Zou, B.; Chiang, K.S. Wide-Range pH Sensor Based on a Smart-Hydrogel-Coated Long-Period Fiber Grating. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 5601405. [Google Scholar] [CrossRef]
- Zhao, Y.; Lei, M.; Liu, S.-X.; Zhao, Q. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sens. Actuators B-Chem. 2018, 261, 226–232. [Google Scholar] [CrossRef]
- Humpolicek, P.; Kasparkova, V.; Saha, P.; Stejskal, J. Biocompatibility of polyaniline. Synth. Met. 2012, 162, 722–727. [Google Scholar] [CrossRef]
- Chiam, Y.S.; Ahad, I.Z.M.; Harun, S.W.; Gan, S.N.; Phang, S.W. Effects of the Dopant Ratio on Polyaniline Coated Fiber Bragg Grating for pH detection. Synth. Met. 2016, 211, 132–141. [Google Scholar] [CrossRef]
- Massaroni, C.; Saccomandi, P.; Schena, E. Medical Smart Textiles Based on Fiber Optic Technology: An Overview. J. Funct. Biomater. 2015, 6, 204–221. [Google Scholar] [CrossRef]
- Witt, J.; Narbonneau, F.; Schukar, M.; Krebber, K.; De Jonckheere, J.; Jeanne, M.; Kinet, D.; Paquet, B.; Depre, A.; D’Angelo, L.T.; et al. Medical Textiles With Embedded Fiber Optic Sensors for Monitoring of Respiratory Movement. IEEE Sens. J. 2012, 12, 246–254. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, N.; Tiwari, U.; Kapur, P. Fiber grating sensors in medicine: Current and emerging applications. Sens. Actuators A-Phys. 2011, 167, 279–290. [Google Scholar] [CrossRef]
- Wang, Y.J.; Zhang, H.; Cui, Y.X.; Duan, S.X.; Lin, W.; Liu, B. A complementary-DNA-enhanced fiber-optic sensor based on microfiber-assisted Mach-Zehnder interferometry for biocompatible pH sensing. Sens. Actuators B-Chem. 2021, 332, 129516. [Google Scholar] [CrossRef]
- Mani, G.K.; Miyakoda, K.; Saito, A.; Yasoda, Y.; Kajiwara, K.; Kimura, M.; Tsuchiya, K. Microneedle pH Sensor: Direct, Label-Free, Real-Time Detection of Cerebrospinal Fluid and Bladder pH. Acs Appl. Mater. Interfaces 2017, 9, 21651–21659. [Google Scholar] [CrossRef]
- Siesjo, B.K. Symposium on acid-base homeostasis. The regulation of cerebrospinal fluid pH. Kidney Int. 1972, 1, 360–374. [Google Scholar] [CrossRef]
- Shi, W.; Li, X.; Ma, H. A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells. Angew. Chem.-Int. Ed. 2012, 51, 6432–6435. [Google Scholar] [CrossRef]
- Zhou, B.Q.; Fan, K.K.; Li, T.F.; Luan, G.M.; Kong, L.J. A biocompatible hydrogel-coated fiber-optic probe for monitoring pH dynamics in mammalian brains in vivo. Sens. Actuators B-Chem. 2023, 380, 133334. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef]
- lesonco. Available online: https://www.lesonco.com/index.php/2019-11-19-09-34-23/item/28-ph (accessed on 24 January 2024).
- Medical EXPO. Available online: https://www.medicalex-po.com.cn/prod/tecnovet/product-124655-1093032.html (accessed on 24 January 2024).
- PreSens. Available online: https://presens.com.cn/product/ph/sensor/261#c1254 (accessed on 24 January 2024).
- ANALOG DEVOCES. Available online: https://www.analog.com/cn/technical-articles/ph-sensor-reference-design-enabled-for-rf-wireless-transmission.html (accessed on 24 January 2024).
- Liu, J.T.; Chen, C.J.; Ikoma, T.; Yoshioka, T.; Cross, J.S.; Chang, S.-J.; Tsai, J.-Z.; Tanaka, J. Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T. Anal. Chim. Acta 2011, 703, 80–86. [Google Scholar] [CrossRef]
- Ishani, A.; Grandits, G.A.; Grimm, R.H.; Svendsen, K.H.; Collins, A.J.; Prineas, R.J.; Neaton, J.D.; Grp, M.R. Association of single measurements of dipstick proteinuria, estimated glomerular filtration rate, and hematocrit with 25-year incidence of end-stage renal disease in the multiple risk factor intervention trial. J. Am. Soc. Nephrol. 2006, 17, 1444–1452. [Google Scholar] [CrossRef]
- Tonelli, M.; Muntner, P.; Lloyd, A.; Manns, B.J.; James, M.T.; Klarenbach, S.; Quinn, R.R.; Wiebe, N.; Hemmelgarn, B.R.; Alberta Kidney Dis, N. Using Proteinuria and Estimated Glomerular Filtration Rate to Classify Risk in Patients with Chronic Kidney Disease A Cohort Study. Ann. Intern. Med. 2011, 154, 12-U146. [Google Scholar] [CrossRef]
- Agrawal, V.; Marinescu, V.; Agarwal, M.; McCullough, P.A. Cardiovascular implications of proteinuria: An indicator of chronic kidney disease. Nat. Rev. Cardiol. 2009, 6, 301–311. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Liang, X.; Qiu, X.H.; Huang, Y.Y.; Xie, C.; Xu, P.; Mao, W.; Guan, B.O.; Albert, J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens. Bioelectron. 2016, 78, 221–228. [Google Scholar] [CrossRef]
- Dennis, J.W.; Granovsky, M.; Warren, C.E. Protein glycosylation in development and disease. Bioessays 1999, 21, 412–421. [Google Scholar] [CrossRef]
- Santos, A.; Bueno, P.R. Glycoprotein assay based on the optimized immittance signal of a redox tagged and lectin-based receptive interface. Biosens. Bioelectron. 2016, 83, 368–378. [Google Scholar] [CrossRef]
- Fang, W.; Yang, Z.; Zigeng, L.; Siyu, Q.; Yiying, G.; Zhenguo, J.; Changsen, S.; Wei, P. Detection of Glycoprotein using fiber optic surface plasmon resonance sensors with Boronic acid. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Republic of Korea, 24–28 April 2017; p. 103233W. [Google Scholar] [CrossRef]
- Fu, F.; Dong, H.; Song, C. Clinical significance of myocardial injury index and inflammatory index in patients with acutemyocardial infarction. Chin. J. Clin. Lab. Manag. (Electron. Ed.) 2021, 9, 160–163. [Google Scholar]
- Tomyshev, K.A.; Tazhetdinova, D.K.; Butov, O.V. High-resolution Fiber Plasmon Sensor. In Proceedings of the Progress in Electromagnetics Research Symposium—Spring (PIERS), St. Petersburg, Russia, 22–25 May 2017; pp. 53–56. [Google Scholar]
- Kanapathipillai, M. Treating p53 Mutant Aggregation-Associated Cancer. Cancers 2018, 10, 154. [Google Scholar] [CrossRef]
- McGrath, E.P.; Logue, S.E.; Mnich, K.; Deegan, S.; Jaeger, R.; Gorman, A.M.; Samali, A. The Unfolded Protein Response in Breast Cancer. Cancers 2018, 10, 344. [Google Scholar] [CrossRef]
- Groh, N.; Buehler, A.; Huang, C.; Li, K.W.; van Nierop, P.; Smit, A.B.; Faendrich, M.; Baumann, F.; David, D.C. Age-Dependent Protein Aggregation Initiates Amyloid-β Aggregation. Front. Aging Neurosci. 2017, 9, 138. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G.; Cairns, N.J.; Crowther, R.A. Tau proteins of Alzheimer paired helical filaments: Abnormal phosphorylation of all six brain isoforms. Neuron 1992, 8, 159–168. [Google Scholar] [CrossRef]
- Iqbal, K.; Alonso, A.D.C.; Chen, S.; Chohan, M.O.; El-Akkad, E.; Gong, C.X.; Khatoon, S.; Li, B.; Liu, F.; Rahman, A.; et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta-Mol. Basis Dis. 2005, 1739, 198–210. [Google Scholar] [CrossRef]
- Fatima Domingues, M.; Direito, I.; Sousa, C.; Radwan, A.; Antunes, P.; Andre, P.; Helguero, L.; Alberto, N. Optical Fibre FPI End-Tip based Sensor for Protein Aggregation Detection. In Proceedings of the 2022 IEEE International Conference on E-health Networking, Application & Services (HealthCom), Genoa, Italy, 17–19 October 2022; pp. 129–134. [Google Scholar] [CrossRef]
- Nu, T.T.V.; Tran, N.H.T.; Nam, E.; Nguyen, T.T.; Yoon, W.J.; Cho, S.; Kim, J.; Chang, K.A.; Ju, H. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer’s disease using surface plasmon resonance fiber sensors. Rsc Adv. 2018, 8, 7855–7862. [Google Scholar] [CrossRef]
- Papadea, C.; Check, I.J. Human immunoglobulin G and immunoglobulin G subclasses: Biochemical, genetic, and clinical aspects. Crit. Rev. Clin. Lab. Sci. 1989, 27, 27–58. [Google Scholar] [CrossRef]
- Soderstrom, T.; Soderstrom, R.; Enskog, A. Immunoglobulin subclasses and prophylactic use of immunoglobulin in immunoglobulin G subclass deficiency. Cancer 1991, 68, 1426–1429. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jing, J.Y.; Wang, B.T. Highly Sensitive SPR Biosensor Based on Graphene Oxide and Staphylococcal Protein A Co-Modified TFBG for Human IgG Detection. IEEE Trans. Instrum. Meas. 2019, 68, 3350–3357. [Google Scholar] [CrossRef]
- Chen, S.M.; Zhang, C.; Wang, J.H.; Li, N.; Song, Y.X.; Wu, H.J.; Liu, Y. A Fiber Bragg Grating Sensor Based on Cladding Mode Resonance for Label-Free Biosensing. Biosensors 2023, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Kamil, Y.M.; Abu Bakar, M.H.; Yaacob, M.H.; Syahir, A.; Lim, H.N.; Mahdi, M.A. Dengue E Protein Detection Using a Graphene Oxide Integrated Tapered Optical Fiber Sensor. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7201008. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem. J. 2020, 156, 104857. [Google Scholar] [CrossRef]
- Abdolrahim, M.; Rabiee, M.; Alhosseini, S.N.; Tahriri, M.; Yazdanpanah, S.; Tayebi, L. Development of optical biosensor technologies for cardiac troponin recognition. Anal. Biochem. 2015, 485, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, S.; Sadanandan, S.; Haridas, V.; Voelcker, N.H.; Prieto-Simon, B. Novel peptidylated surfaces for interference-free electrochemical detection of cardiac troponin I. Biosens. Bioelectron. 2018, 99, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Singh, R.; Li, M.Y.; Min, R.; Wu, Q.; Kaushik, B.K.; Jha, R.; Zhang, B.Y.; Kumar, S. Cardiac Troponin I Detection Using Gold/Cerium-Oxide Nanoparticles Assisted Hetro-Core Fiber Structure. IEEE Trans. Nanobioscience 2023, 22, 375–382. [Google Scholar] [CrossRef]
- Li, B.; Zhao, M.; Feng, L.; Dou, C.; Ding, S.; Zhou, G.; Lu, L.; Zhang, H.; Chen, F.; Li, X.; et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat. Commun. 2020, 11, 3102. [Google Scholar] [CrossRef]
- Benndorf, G.; Singel, S.; Proest, G.; Lanksch, W.; Felix, R. The Doppler guide wire: Clinical applications in neuroendovascular treatment. Neuroradiology 1997, 39, 286–291. [Google Scholar] [CrossRef]
- Benndorf, G.; Wellnhofer, E.; Lanksch, W.; Felix, R. Intraaneurysmal flow: Evaluation with Doppler guidewires. Ajnr 1996, 17, 1333–1337. [Google Scholar]
- Hsu, B. PET tracers and techniques for measuring myocardial blood flow in patients with coronary artery disease. J. Biomed. Res. 2013, 27, 452–459. [Google Scholar] [CrossRef]
- Ruiz-Vargas, A.; Morris, S.A.; Hartley, R.H.; Arkwright, J.W. Optical flow sensor for continuous invasive measurement of blood flow velocity. J. Biophotonics 2019, 12, e201900139. [Google Scholar] [CrossRef]
- Tanaka, T.; Benedek, G.B. Measurement of the Velocity of Blood Flow (in vivo) Using a Fiber Optic Catheter and Optical Mixing Spectroscopy. Appl. Opt. 1975, 14, 189–196. [Google Scholar] [CrossRef]
- Wu, Y.C. Design of Portable Body Rheometer. J. Xi’an Aeronaut. Inst. 2011, 29, 61–63. [Google Scholar]
- Tahmoush, A.J.; Bowen, P.D.; Bonner, R.F.; Mancini, T.J.; Engel, W.K. Laser Doppler blood flow studies during open muscle biopsy in patients with neuromuscular diseases. Neurology 1983, 33, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.I.; Vurek, G.G. Fiber-optic sensors for biomedical applications. Science 1984, 224, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Le-Cong, P.; Zweifach, B.W. In vivo and in vitro velocity measurements in microvasculature with a laser. Microvasc. Res. 1979, 17, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Agostoni, A.; Pesenti, A.; Pelizzola, A.; Rossi, G.P.; Langer, M.; Vesconi, S.; Uziel, L.; Fox, U.; Longoni, F.; et al. Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet 1980, 2, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Damianou, D. The Wavelength Dependence of the Photoplethysmogram and Its Implication to Pulse Oximetry. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1995. [Google Scholar]
- Reichelt, S.; Fiala, J.; Werber, A.; Foerster, K.; Heilmann, C.; Klemm, R.; Zappe, H. Development of an implantable pulse oximeter. IEEE Trans. Biomed. Eng. 2008, 55, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Correia, R.; Ballaji, H.K.; Korposh, S.; Hayes-Gill, B.R.; Morgan, S.P. Optical Fibre-Based Pulse Oximetry Sensor with Contact Force Detection. Sensors 2018, 18, 3632. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Wang, W.K.; Kao, T.; Yu, B.C.; Chiang, B.C. Spectral analysis of radial pulse in patients with acute, uncomplicated myocardial infarction. Jpn. Heart J. 1993, 34, 131–143. [Google Scholar] [CrossRef]
- Yu, G.L.; Wang, Y.Y.L.; Wang, W.K. Resonance in the kidney system of rats. Am. J. Physiol. 1994, 267, H1544–H1548. [Google Scholar] [CrossRef]
- Lu, W.A.; Cheng, C.H.; Wang, Y.Y.L.; Wang, W.K. Pulse spectrum analysis of hospital patients with possible liver problems. Am. J. Chin. Med. 1996, 24, 315–320. [Google Scholar] [CrossRef]
- Pauca, A.L.; O’Rourke, M.F.; Kon, N.D. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 2001, 38, 932–937. [Google Scholar] [CrossRef]
- Nichols, W.W.; Singh, B.M. Augmentation index as a measure of peripheral vascular disease state. Curr. Opin. Cardiol. 2002, 17, 543–551. [Google Scholar] [CrossRef]
- Otsuka, T.; Munakata, R.; Kato, K.; Kodani, E.; Ibuki, C.; Kusama, Y.; Seino, Y.; Kawada, T. Oscillometric measurement of brachial artery cross-sectional area and its relationship with cardiovascular risk factors and arterial stiffness in a middle-aged male population. Hypertens. Res. 2013, 36, 910–915. [Google Scholar] [CrossRef]
- Haseda, Y.; Bonefacino, J.; Tam, H.Y.; Chino, S.; Koyama, S.; Ishizawa, H. Measurement of Pulse Wave Signals and Blood Pressure by a Plastic Optical Fiber FBG Sensor. Sensors 2019, 19, 5088. [Google Scholar] [CrossRef] [PubMed]
- Pant, S.; Umesh, S.; Asokan, S. A Novel Approach to Acquire the Arterial Pulse by Finger Plethysmography Using Fiber Bragg Grating Sensor. IEEE Sens. J. 2020, 20, 5921–5928. [Google Scholar] [CrossRef]
- Lukman, S.; He, Y.; Hui, S.-C. Computational methods for Traditional Chinese Medicine: A survey. Comput. Methods Programs Biomed. 2007, 88, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Kim, J.U.; Lee, H.J.; Lee, J.; Ryu, H.H.; Lee, Y.J.; Kim, J.Y. A Clinical Study of the Pulse Wave Characteristics at the Three Pulse Diagnosis Positions of Chon, Gwan and Cheok. Evid.-Based Complement. Altern. Med. 2011, 2011, 904056. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.-J.; Sun, Y. Developing classification indices for Chinese pulse diagnosis. Complement. Ther. Med. 2007, 15, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Lu, S.; Wang, R.; Cui, L. PDhms: Pulse Diagnosis via Wearable Healthcare Sensor Network. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), Kyoto, Japan, 5–9 June 2011; 2011; p. 5. [Google Scholar]
- Jia, D.G.; Chao, J.; Li, S.; Zhang, H.X.; Yan, Y.Z.; Liu, T.G.; Sun, Y. A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement. IEEE Trans. Biomed. Eng. 2018, 65, 839–846. [Google Scholar] [CrossRef]
- Koyama, S.; Hayase, T.; Miyauchi, S.; Shirai, A.; Chino, S.; Haseda, Y.; Ishizawa, H. Influence on Measurement Signal by Pressure and Viscosity Changes of Fluid and Installation Condition of FBG Sensor Using Blood Flow Simulation Model. IEEE Sens. J. 2019, 19, 11946–11954. [Google Scholar] [CrossRef]
- Ghasemi, M.; Oh, J.; Jeong, S.; Lee, M.; Darian, S.B.; Oh, K.; Kim, J.K. Fabry-Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection. Biosensors 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
Sensing Principle | Coatings | Range | Sensitivity | Reference |
---|---|---|---|---|
TFBG | GO and GOD | 0~8 mM | 0.24 nm/mM | [51] |
SPR | Au and GO | 25~175 mg/dL | 271.15°/RIU | [52] |
TFBG-SPR | Au, GO, and PBA | 1 fM~10 pM | [53] | |
FF | Ca alginate | 0~20 mM | [59] | |
FBG | RGO and 4-APBA | 1 nM~10 mM | [60] | |
SPR-PCF | Au | 200 nm/RIU | [63] | |
SPR | Au | 0.1688–200 mg/dL | 100 nm/(mg/dL) | [64] |
Transmission-type SPR | Au | 0.0001 g/mL 0.5000 g/mL | 161.302 nm/(g/mL) 312.000 nm/(g/mL) | [65] |
Multimode interference | GOD | 0~3.0 mg/mL | [66] | |
LPFG | PAA, PEI, and GOD | 1 nM~10 µM (after being integrated into a microfluidic chip) | [69] |
Sensing Principle | Coatings | Range | Resolution/ pH Units | Reference |
---|---|---|---|---|
Ratiometric fluorescence signal | HPTS | 6.0~8.0 | 0.0013 | [80] |
Ratiometric fluorescence signal | 6.0~8.0 | 0.03 | [91] | |
LPFG | PAA ionic hydrogels | 2~7 | 0.0027 | [99] |
LPFG | Smart hydrogels | 2~12 | [102] | |
SPR | Smart hydrogels and Ag | 1~12 | [103] | |
TFBG | PAni | 2~12 | [101] | |
MZI | DNA(i-motif) | 4.98~7.4 | 0.042 | [109] |
Lesonco pH sensor (Commercial) | 0.00~14.00 | 0.01 | [115] | |
G-PHT1 pH tester (laboratory) | 0.00~14.00 | 0.1 | [116] | |
Presens pH sensor (Commercial) | 5.5~8.5 | 0.01 | [117] | |
Analog pH sensor (Commercial) | 0~14 | 0.01 | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, W.; Chen, Y.; Ma, C.; Peng, D.; Bai, X.; Zhao, J.; Liu, S.; Luo, L. Application of Optical Fiber Sensing Technology and Coating Technology in Blood Component Detection and Monitoring. Coatings 2024, 14, 173. https://doi.org/10.3390/coatings14020173
Qu W, Chen Y, Ma C, Peng D, Bai X, Zhao J, Liu S, Luo L. Application of Optical Fiber Sensing Technology and Coating Technology in Blood Component Detection and Monitoring. Coatings. 2024; 14(2):173. https://doi.org/10.3390/coatings14020173
Chicago/Turabian StyleQu, Wenwen, Yanxia Chen, Chaoqun Ma, Donghong Peng, Xuanyao Bai, Jiaxin Zhao, Shuangqiang Liu, and Le Luo. 2024. "Application of Optical Fiber Sensing Technology and Coating Technology in Blood Component Detection and Monitoring" Coatings 14, no. 2: 173. https://doi.org/10.3390/coatings14020173
APA StyleQu, W., Chen, Y., Ma, C., Peng, D., Bai, X., Zhao, J., Liu, S., & Luo, L. (2024). Application of Optical Fiber Sensing Technology and Coating Technology in Blood Component Detection and Monitoring. Coatings, 14(2), 173. https://doi.org/10.3390/coatings14020173