The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study
Abstract
:1. Introduction
2. Methods and Computational Details
3. Results and Discussion
3.1. Surface Energy
3.2. Hydrogen Atom Adsorption Configuration and Adsorption Energy
3.3. Bader Charge
3.4. Density of States
3.5. Dissociation of H2 Molecules on the Surface of PuO2
4. Conclusions
- (1)
- Among the common surfaces of PuO2, the surface of PuO2(111) is the most stable. Among its three possible forms, the outer layer with O atoms and the second layer with Pu atoms have the best morphological stability and the highest possibility of existence.
- (2)
- There are five possible adsorption sites for H atoms on the surface of PuO2(111), among which the top position of the outermost O atom and the bridge position of the second outer Pu atom are relatively stable adsorption configurations, forming O-H bonds with O atoms, indicating chemical adsorption. The other three adsorption configurations are physical adsorption.
- (3)
- Through the analysis of charge transfer, it was found that both H atoms in the two configurations undergoing chemical adsorption lost electrons, and the amount of charge transfer was relatively large. During the chemical adsorption process, there was a greater heat release, indicating a higher adsorption energy.
- (4)
- The density of states results indicate that during chemical adsorption, there is a significant change in the density of states of the O-p and H-s orbital electrons, leading to hybridization and stable bonding. When physical adsorption occurs, the change in the density of states is not significant.
- (5)
- The dissociation process of hydrogen molecules on the surface was analyzed using the transition state search method. Research has found that hydrogen molecules cross the energy barrier of 1.06 eV from the most stable adsorption state and dissociate into two hydrogen atoms adsorbed on the top of the O atom. The overall energy of the system is somewhat reduced, and hydrogen tends to exist in an atomic form on the surface of PuO2(111).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savrasov, S.Y.; Kotliar, G. Ground State Theory of d-Pu. Phys. Rev. Lett. 2000, 84, 3670–3673. [Google Scholar] [CrossRef] [PubMed]
- Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W.M. First-Principles Calculations of PuO2±x. Science 2003, 301, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.T.; van der Laan, G. Nature of the 5f states in actinide metals. Rev. Mod. Phys. 2009, 81, 235–298. [Google Scholar] [CrossRef]
- Zhu, J.-X.; Albers, R.C.; Haule, K.; Kotliar, G.; Wills, J.M. Site-selective electronic correlation in α-plutonium metal. Nat. Commun. 2013, 4, 2644. [Google Scholar] [CrossRef] [PubMed]
- Haschke, J.M.; Allen, T.H.; Morales, L.A. Surface and Corrosion Chemistry of Plutonium; Los Alamos Science: Los Alamos, NM, USA, 2000.
- Hecker, S.S.; Martz, J.C. Aging of Plutonium and Its Alloys; Los Alamos Science: Los Alamos, NM, USA, 2000.
- Haschke, J.M. The Plutonium-Oxygen Phase-Diagram. Abstr. Pap. Am. Chem. Soc. 1990, 200, 117-NUCL. [Google Scholar]
- Flores, H.G.G.; Roussel, P.; Moore, D.P.; Pugmire, D.L. Characterization and stability of thin oxide films on plutonium surfaces. Surf. Sci. 2011, 605, 314–320. [Google Scholar] [CrossRef]
- Nelson, A.J.; Roussel, P. Low temperature oxidation of plutonium. J. Vac. Sci. Technol. A 2013, 31, 031406. [Google Scholar] [CrossRef]
- Ao, B.; Qiu, R.; Lu, H.; Ye, X.; Shi, P.; Chen, P.; Wang, X. New Insights into the Formation of Hyperstoichiometric Plutonium Oxides. J. Phys. Chem. C 2015, 119, 101–108. [Google Scholar] [CrossRef]
- Qiu, R.Z.; Zhang, Y.B.; Ao, B.Y. Stability and optical properties of plutonium monoxide from first-principle calculation. Sci. Rep. 2017, 7, 12167. [Google Scholar] [CrossRef] [PubMed]
- Ao, B.; Qiu, R. First-principles explorations of the universal picture of oxide layer structure over metallic plutonium. Corros. Sci. 2019, 153, 236–248. [Google Scholar] [CrossRef]
- McGillivray, G.W.; Knowles, J.P.; Findlay, I.M.; Dawes, M.J. The plutonium/hydrogen reaction: The pressure dependence of reaction initiation time and nucleation rate controlled by a plutonium dioxide over-layer. J. Nucl. Mater. 2011, 412, 35–40. [Google Scholar] [CrossRef]
- Brierley, M.; Knowles, J.P.; Sherry, A.; Preuss, M. The anisotropic growth morphology and microstructure of plutonium hydride reaction sites. J. Nucl. Mater. 2016, 469, 145–152. [Google Scholar] [CrossRef]
- Haschke, J.M.; Allen, T.H. Plutonium hydride, sesquioxide and monoxide monohydride: Pyrophoricity and catalysis of plutonium corrosion. J. Alloys Compd. 2001, 320, 58–71. [Google Scholar] [CrossRef]
- Dinh, L.N.; Haschke, J.M.; Saw, C.K.; Allen, P.G.; McLean, W. Pu2O3 and the plutonium hydriding process. J. Nucl. Mater. 2011, 408, 171–175. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, B.; Zhang, Q.; Liu, H.; Liu, K.; Song, H. First-Principles Study of the Hydrogen Resistance Mechanism of PuO2. ACS Omega 2020, 5, 7211–7218. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, B.; Zhang, Q.; Liu, H.; Liu, K.; Song, H. First-principles study of hydrogen behavior in α-Pu2O3. Comput. Mater. Sci. 2020, 179, 109688. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, B.; Zhang, Q.L.; Liu, H.F.; Song, H.F. Theoretical insights into the hydroxyl-promoted H2 releasing reaction after H2O splitting on Pu-oxide surfaces. J. Nucl. Mater. 2023, 585, 154642. [Google Scholar] [CrossRef]
- Yu, H.L.; Li, G.; Li, H.B.; Qiu, R.Z.; Huang, H.; Meng, D.Q. Adsorption and dissociation of H2 on PuO2 (110) surface: A density functional theory study. J. Alloys Compd. 2016, 654, 567–573. [Google Scholar] [CrossRef]
- Yu, H.L.; Tang, T.; Zheng, S.T.; Shi, Y.; Qiu, R.Z.; Luo, W.H.; Meng, D.Q. A theoretical study of hydrogen atoms adsorption and diffusion on PuO2 (110) surface. J. Alloys Compd. 2016, 666, 287–291. [Google Scholar] [CrossRef]
- Tang, J.; Qiu, R.Z.; Chen, J.F.; Ao, B.Y. Revealing the microscopic mechanism of PuO2 and α-Pu2O3 in resisting plutonium hydrogenation via ab initio molecular dynamics simulation. J. Alloys Compd. 2021, 874, 159904. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Sun, B.; Liu, H.F.; Song, H.F.; Zhang, G.C.; Zheng, H.; Zhao, X.G.; Zhang, P. The different roles of Pu-oxide overlayers in the hydrogenation of Pu-metal: An ab initio molecular dynamics study based on van der Waals density functional (vdW-DF) plus U. J. Chem. Phys. 2014, 140, 4873418. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative Minmization Techniques for Abinitio Total-Energy Calculations—Molecular-Dynamics and Conjugate Gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef]
- Haschke, J.M.; Allen, T.H.; Morales, L.A. Reaction of plutonium dioxide with water: Formation and properties of PuO2+x. Science 2000, 287, 285–287. [Google Scholar] [CrossRef]
Adsorption Site | pos1 | pos2 | pos3 | pos4 | pos5 |
---|---|---|---|---|---|
Adsorption Energy (eV) | −2.486 | −1.186 | −0.756 | −2.466 | −1.186 |
Surface Model | qH | q1st | q2nd | q3rd | q4th | q5th |
---|---|---|---|---|---|---|
Complete Surface Model | - | 0.0330 | −0.0027 | −0.0145 | 0.0156 | −0.0344 |
Position1 | −0.5942 | 0.4354 | −0.0304 | 0.1836 | −0.0118 | 0.0174 |
Position2 | 0.2984 | −0.4228 | −0.0658 | 0.2077 | −0.0088 | −0.0087 |
Position3 | 0.3128 | −0.1909 | −0.2985 | 0.1836 | −0.0093 | 0.0022 |
Position4 | −0.5991 | 0.4680 | −0.0576 | 0.1738 | −0.0122 | 0.0272 |
Position5 | 0.2970 | −0.3803 | −0.1012 | 0.1990 | −0.0092 | −0.0053 |
Surface Model | H2 | P-O-O | V-O-O | P-Pu | V-Pu | P-S-O | V-S-O |
---|---|---|---|---|---|---|---|
Adsorption Energy (eV) | N/A | −0.133 | −0.234 | −0.302 | −0.171 | −0.205 | −0.095 |
H-H bond length (Å) | 0.741 | 0.750 | 0.752 | 0.755 | 0.751 | 0.752 | 0.750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhu, M.; Li, Y. The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study. Coatings 2024, 14, 195. https://doi.org/10.3390/coatings14020195
Huang H, Zhu M, Li Y. The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study. Coatings. 2024; 14(2):195. https://doi.org/10.3390/coatings14020195
Chicago/Turabian StyleHuang, Huang, Min Zhu, and Yan Li. 2024. "The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study" Coatings 14, no. 2: 195. https://doi.org/10.3390/coatings14020195
APA StyleHuang, H., Zhu, M., & Li, Y. (2024). The Adsorption Behavior of Hydrogen on the PuO2(111) Surface: A DFT+U Study. Coatings, 14(2), 195. https://doi.org/10.3390/coatings14020195