Influence of Anodic Oxidation on the Organizational Structure and Corrosion Resistance of Oxide Film on AZ31B Magnesium Alloy
Abstract
:1. Introduction
2. Experiment
2.1. Preparation Method
2.2. Detection and Analysis
3. Results
3.1. Morphology of the Anodic Oxide Film on AZ31B Magnesium Alloy
3.2. Thickness of the Anodic Oxide Film on AZ31B Magnesium Alloy
3.3. Phase Composition of the Anodic Oxide Film on AZ31B Magnesium Alloy
3.4. Electrochemical Performance of Anodized Samples
4. Discussion
Corrosion Protection Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Han, P.; Peng, P.; Zhang, T.; Liu, Q.; Yuan, S.; Huang, L.-Y.; Yu, H.; Qiao, K.; Wang, K. Friction Stir Processing of Magnesium Alloys: A Review. Acta Metall. Sin. Engl. Lett. 2019, 33, 43–57. [Google Scholar] [CrossRef]
- Çelik, I. Structure and surface properties of Al2O3–TiO2 ceramic coated AZ31 magnesium alloy. Ceram. Int. 2016, 42, 13659–13663. [Google Scholar] [CrossRef]
- Bai, J.; Yang, Y.; Wen, C.; Chen, J.; Zhou, G.; Jiang, B.; Peng, X.; Pan, F. Applications of magnesium alloys for aerospace: A review. J. Magnes. Alloys 2023, 11, 3609–3619. [Google Scholar] [CrossRef]
- Zhan, W.; Tian, F.; Ou-Yang, G.; Gui, B.-Y. Effects of Nickel Additive on Micro-Arc Oxidation Coating of AZ63B Magnesium Alloy. Int. J. Precis. Eng. Manuf. 2018, 19, 1081–1087. [Google Scholar] [CrossRef]
- Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11, 6861. [Google Scholar] [CrossRef]
- Shu, Y.; Peng, F.; Xie, Z.-H.; Yong, Q.; Wu, L.; Xie, J.; Li, M. Well-oriented magnesium hydroxide nanoplatelets coating with high corrosion resistance and osteogenesis on magnesium alloy. J. Magnes. Alloys, 2023; in press. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.-L.; Cao, F.; Shi, Z.; Bowen, P.K. Advances in Mg corrosion and research suggestions. J. Magnes. Alloys 2013, 1, 177–200. [Google Scholar] [CrossRef]
- Yin, Z.-Z.; Qi, W.; Zeng, R.; Chen, X.-B.; Gu, C.; Guan, S.; Zheng, Y.-F. Advances in coatings on biodegradable magnesium alloys. J. Magnes. Alloys 2020, 8, 42–65. [Google Scholar] [CrossRef]
- Macwan, A.; Jiang, X.; Chen, D. Interfacial Characterization of Dissimilar Joints Between Al/Mg/Al-Trilayered Clad Sheet to High-Strength Low-Alloy Steel. JOM 2015, 67, 1468–1477. [Google Scholar] [CrossRef]
- Karakulak, E. A review: Past, present and future of grain refining of magnesium castings. J. Magnes. Alloys 2019, 7, 355–369. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, B.; Chen, D.L.; Jin, Z.; Zhao, L.; Yang, Q.; Huang, G.; Pan, F. Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: A review. J. Mater. Sci. 2021, 56, 12965–12998. [Google Scholar] [CrossRef]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloys 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Wan, D.; Xue, Y.; Hu, J.; Wang, H.; Liu, W. Corrosion and chemical behavior of Mg97Zn1Y2-1wt.%SiC under different corrosion solutions. China Foundry 2021, 18, 68–74. [Google Scholar] [CrossRef]
- Ramesh, S.; Viswanathan, R.; Ambika, S. Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement 2016, 78, 63–72. [Google Scholar] [CrossRef]
- Chen, L.; Xu, J.; Choi, H.; Pozuelo, M.; Ma, X.; Bhowmick, S.; Yang, J.-M.; Mathaudhu, S.; Li, X.-C. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 2015, 528, 539–543. [Google Scholar] [CrossRef]
- Shuai, C.; Wang, B.; Yang, Y.; Peng, S.; Gao, C. 3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties. Compos. Part B Eng. 2019, 162, 611–620. [Google Scholar] [CrossRef]
- Luo, Q.; Guo, Y.; Liu, B.; Feng, Y.; Zhang, J.; Li, Q.; Chou, K. Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review. J. Mater. Sci. Technol. 2020, 44, 171–190. [Google Scholar] [CrossRef]
- Zheng, Z. Study on electrochemical corrosion behaviors of AZ31 magnesium alloys in NaCl solution. J. Shenyang Norm. Univ. 2004. Available online: https://consensus.app/papers/study-corrosion-behaviors-az31-magnesium-alloys-nacl-zhiguo/14718c541b0759ac854ce00c1660bff0/ (accessed on 16 February 2024).
- Li, Z.; Yan, S.; Chen, W.; Zhang, Z.; Kang, Y.; Ma, W. The effect of current density on the anodic oxidation hydrogen barrier film on ZrH1.8 surface. Corros. Sci. 2024, 227, 111740. [Google Scholar] [CrossRef]
- Wang, S.; Zhai, B.; Zhang, B. The effect of the microstructure of porous alumina films on the mechanical properties of glass-fiber-reinforced aluminum laminates. Compos. Interfaces 2014, 21, 381–393. [Google Scholar] [CrossRef]
- Lee, C.-L.; Lin, T.-S.; Kuo, C.; Hsieh, S.; Chen, Y.-C.; Ou, S.; Lin, J.-H.; Ma, C.-H. Anti-fracture performance of micro-arc oxidization films on TiNiSi shape memory alloy after elongation, bending and shape recovery. Surf. Coat. Technol. 2019, 359, 495–510. [Google Scholar] [CrossRef]
- Schwirn, K.; Lee, W.-S.; Hillebrand, R.; Steinhart, M.; Nielsch, K.; Gösele, U. Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2008, 2, 302–310. [Google Scholar] [CrossRef]
- Li, W.; Li, W.; Zhu, L.; Liu, H.; Wang, X. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2013, 178, 417–424. [Google Scholar] [CrossRef]
- Ko, Y.; Lee, E.S.; Shin, D. Influence of voltage waveform on anodic film of AZ91 Mg alloy via plasma electrolytic oxidation: Microstructural characteristics and electrochemical responses. J. Alloy. Compd. 2014, 586, S357–S361. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, Y.-K.; Park, I.; Lee, S.-J.; Lee, M.-H.; Yoon, J.-M.; Bae, T. Film characteristics of anodic oxidized AZ91D magnesium alloy by applied power. Surf. Interface Anal. 2009, 41, 524–530. [Google Scholar] [CrossRef]
- Yang, K.; Huang, H.; Chen, J.; Cao, B. Discharge Behavior and Dielectric Breakdown of Oxide Films during Single Pulse Anodizing of Aluminum Micro-Electrodes. Materials 2019, 12, 2286. [Google Scholar] [CrossRef]
- Boinet, M.; Verdier, S.; Maximovitch, S.; Dalard, F. Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties of coatings. Surf. Coat. Technol. 2005, 199, 141–149. [Google Scholar] [CrossRef]
- Frano, A.; Bluschke, M.; Xu, Z.; Frandsen, B.; Lu, Y.; Yi, M.; Marks, R.; Mehta, A.; Borzenets, V.; Meyers, D.; et al. Control of dopant crystallinity in electrochemically treated cuprate thin films. Phys. Rev. Mater. 2019, 3, 063803. [Google Scholar] [CrossRef]
- Kowarik, S.; Gerlach, A.; Sellner, S.; Schreiber, F.; Cavalcanti, L.; Konovalov, O. Real-time observation of structural and orientational transitions during growth of organic thin films. Phys. Rev. Lett. 2006, 96, 125504. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yan, C.; Wang, F. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D. Electrochim. Acta 2007, 52, 3785–3793. [Google Scholar] [CrossRef]
- Chernyakova, K.; Vrublevsky, I.; Jagminas, A.; Klimas, V. Effect of anodic oxygen evolution on cell morphology of sulfuric acid anodic alumina films. J. Solid State Electrochem. 2021, 25, 1453–1460. [Google Scholar] [CrossRef]
- Vanhumbeeck, J.; Proost, J. On the Relation Between Growth Instabilities and Internal Stress Evolution during Galvanostatic Ti Thin Film Anodization. J. Electrochem. Soc. 2008, 155, C506–C514. [Google Scholar] [CrossRef]
- Ono, S.; Moronuki, S.; Mori, Y.; Koshi, A.; Liao, J.; Asoh, H. Effect of Electrolyte Concentration on the Structure and Corrosion Resistance of Anodic Films Formed on Magnesium through Plasma Electrolytic Oxidation. Electrochimica Acta 2017, 240, 415–423. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Ou, X. Microstructures and properties of aluminum film and its effect on corrosion resistance of AZ31B substrate. Trans. Nonferrous Met. Soc. China 2008, 18, s312–s317. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, K.-S.; Jung, T. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution. Electrochem. Commun. 2008, 10, 1716–1719. [Google Scholar] [CrossRef]
- Asoh, H.; Matsuoka, S.; Sayama, H.; Ono, S. Anodizing under sparking of AZ31B magnesium alloy in Na3PO4 electrolyte. J. Jpn. Inst. Light Met. 2010, 60, 608–614. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Pedeferri, M.P. Effect of anodic oxidation parameters on the titanium oxides formation. Corros. Sci. 2007, 49, 939–948. [Google Scholar] [CrossRef]
- Bai, A.; Chen, Z.-J. Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D. Surf. Coat. Technol. 2009, 203, 1956–1963. [Google Scholar] [CrossRef]
- Hahn, R.; Brunner, J.G.; Kunze, J.; Schmuki, P.; Virtanen, S. A novel approach for the formation of Mg(OH)2/MgO nanowhiskers on magnesium: Rapid anodization in chloride containing solutions. Electrochem. Commun. 2008, 10, 288–292. [Google Scholar] [CrossRef]
- Thomas, S.; Medhekar, N.; Frankel, G.; Birbilis, N. Corrosion mechanism and hydrogen evolution on Mg. Curr. Opin. Solid State Mater. Sci. 2015, 19, 85–94. [Google Scholar] [CrossRef]
- He, Y. An application study of special MgO to oriented silicon steel. Trans. Mater. Heat Treat. 2011. Available online: https://consensus.app/papers/application-study-oriented-silicon-steel-yedong/54bc4e3d68805dce8465037bc8979ae9/ (accessed on 18 January 2024).
- Martin, G.B.; Spera, F.; Ghiorso, M.; Nevins, D. Structure, thermodynamic, and transport properties of molten Mg2SiO4: Molecular dynamics simulations and model EOS. Am. Miner. 2009, 94, 693–703. [Google Scholar] [CrossRef]
- Niu, H.; Oganov, A.; Chen, X.-Q.; Li, D. Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures. Sci. Rep. 2015, 5, 18347. [Google Scholar] [CrossRef]
- Zuraidawani, C.D.; Norhadira, F.W.; Derman, M. Synthesis and Characterisation of Anodized Powder Metallurgy Mg-Ca Alloy. Solid State Phenom. 2018, 280, 221–225. [Google Scholar] [CrossRef]
- Si, H.; Sun, Z.-H.; Kang, X.; Zi, W.; Zhang, H.-L. Voltage-dependent morphology, wettability and photocurrent response of anodic porous titanium dioxide films. Microporous Mesoporous Mater. 2009, 119, 75–81. [Google Scholar] [CrossRef]
- Kim, S.-J.; Okido, M. The Electrochemical Properties and Mechanism of Formation of Anodic Oxide Films on Mg-Al Alloys. Bull. Korean Chem. Soc. 2003, 24, 975–980. [Google Scholar] [CrossRef]
- CherylLyne, C. An artificial neural network model for the corrosion current density of steel in mortar mixed with seawater. Int. J. GEOMATE 2019, 16, 79–84. [Google Scholar] [CrossRef]
- Andrade, C. Electrochemical methods for on-site corrosion detection. Struct. Concr. 2020, 21, 1385–1395. [Google Scholar] [CrossRef]
- Starosta, R. Influence of Seawater Salinity on Corrosion of Austenitic Steel. J. KONES 2019, 26, 219–225. [Google Scholar] [CrossRef]
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E. Effects of the Synthesis Coating Parameters for Metal Bipolar Plates. Sains Malays. 2020, 49, 3179–3188. [Google Scholar] [CrossRef]
- Nyby, C.; Guo, X.; Saal, J.; Chien, S.-C.; Gerard, A.Y.; Ke, H.; Li, T.; Lu, P.; Oberdorfer, C.; Sahu, S.; et al. Electrochemical metrics for corrosion resistant alloys. Sci. Data 2021, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Attarzadeh, N.; Ramana, C.V. Plasma Electrolytic Oxidation Ceramic Coatings on Zirconium (Zr) and Zr-Alloys: Part-II: Properties and Applications. Coatings 2021, 11, 620. [Google Scholar] [CrossRef]
- Polder, R.; Cigna, R. Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Mater. Struct. 2004, 37, 623–643. [Google Scholar] [CrossRef]
- Frankel, G. Fundamentals of Corrosion Kinetics. Act. Prot. Coat. 2016, 233, 17–32. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, Y.; An, B.; Xu, H.; Liu, Y.; Zhang, L.C.; Ma, H.; Wang, W.M. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions. PLoS ONE 2016, 11, e0146421. [Google Scholar] [CrossRef]
- Parthiban, G.; Malarkodi, D.; Palaniswamy, N.; Venkatachari, G. Corrosion protection by acrylamide treatment for magnesium alloy metal matrix composite (MMC) reinforced with titanium boride. Surf. Eng. 2010, 26, 378–384. [Google Scholar] [CrossRef]
- Supriyono, R.O.; Wulaningfitri, L.P.M.; Pradana, J.C.; Feliana, I. Influence of anodizing concentration and electric potential on surface morphology and corrosion behavior of anodized magnesium in seawater activated battery. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012054. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Ma, Y.; Song, G.-L.; Zheng, D.; Jiang, B.; Atrens, A.; Pan, F. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros. Sci. 2018, 139, 370–382. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Karimi, M.; Shayegh Boroujeny, B.; Adelkhani, H. The effect of zirconium hydride on the corrosion and mechanical behavior of zirconium base metal: Experimental and simulation studies. Appl. Surf. Sci. Adv. 2021, 6, 100166. [Google Scholar] [CrossRef]
- Rahman, Z.U.; Deen, K.M.; Haider, W. Controlling corrosion kinetics of magnesium alloys by electrochemical anodization and investigation of film mechanical properties. Appl. Surf. Sci. 2019, 484, 906–916. [Google Scholar] [CrossRef]
- Zaffora, A.; Di Franco, F.; Virtù, D.; Pavia, F.C.; Ghersi, G.; Virtanen, S.; Santamaria, M. Tuning of the Mg Alloy AZ31 Anodizing Process for Biodegradable Implants. ACS Appl. Mater. Interfaces 2021, 13, 12866–12876. [Google Scholar] [CrossRef]
Sample | Ecorr | Icorr | βα | |βc| | Rp |
---|---|---|---|---|---|
(Vvs.SCE) | (A/cm2) | (V/dec) | (V/dec) | (kΩ/cm2) | |
Substrate | −0.25 | 9.4 × 10−4 | 0.93 | 63.9 | 0.42 |
10 V | −0.11 | 5.02 × 10−4 | 1.11 | 82.5 | 0.95 |
12.5 V | −0.05 | 7.93 × 10−4 | 1.54 | 94.7 | 0.83 |
15 V | 0.06 | 1.04 × 10−3 | 9.02 | 14.8 | 2.35 |
17.5 V | 0.04 | 4.43 × 10−5 | 1.05 | 0.81 | 4.49 |
20 V | 0.07 | 8.48 × 10−5 | 1.04 | 0.49 | 1.71 |
Sample | Rs | Qfilm | nfilm | Rfilm | Qdl | ndl | Rct | R = Rf + Rct |
---|---|---|---|---|---|---|---|---|
(Ω/cm2) | (μS·cm−2·s−n) | (Ω/cm2) | (μS·cm−2·s−n) | (Ω/cm2) | (Ω/cm2) | |||
Substrate | 19.8 | 88.9 | 0.516 | 281 | 281 | |||
10 V | 17.4 | 43.6 | 0.799 | 50.7 | 46.7 | 0.917 | 593 | 643.7 |
12.5 V | 14.1 | 97 | 0.812 | 432 | 393 | 0.845 | 525 | 957 |
15 V | 15.1 | 86.4 | 0.798 | 685 | 468 | 0.951 | 134 | 819 |
17.5 V | 21.0 | 113 | 0.732 | 776 | 179 | 0.926 | 1210 | 1986 |
20 V | 16.1 | 97.6 | 0.777 | 658 | 746 | 0.977 | 318 | 976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Yan, S.; Li, Z.; Wang, Z.; Yang, A.; Ma, W.; Chen, W.; Qu, Y. Influence of Anodic Oxidation on the Organizational Structure and Corrosion Resistance of Oxide Film on AZ31B Magnesium Alloy. Coatings 2024, 14, 271. https://doi.org/10.3390/coatings14030271
Kang Y, Yan S, Li Z, Wang Z, Yang A, Ma W, Chen W, Qu Y. Influence of Anodic Oxidation on the Organizational Structure and Corrosion Resistance of Oxide Film on AZ31B Magnesium Alloy. Coatings. 2024; 14(3):271. https://doi.org/10.3390/coatings14030271
Chicago/Turabian StyleKang, Yuxin, Shufang Yan, Zhanlin Li, Zhigang Wang, Ao Yang, Wen Ma, Weidong Chen, and Yinhui Qu. 2024. "Influence of Anodic Oxidation on the Organizational Structure and Corrosion Resistance of Oxide Film on AZ31B Magnesium Alloy" Coatings 14, no. 3: 271. https://doi.org/10.3390/coatings14030271
APA StyleKang, Y., Yan, S., Li, Z., Wang, Z., Yang, A., Ma, W., Chen, W., & Qu, Y. (2024). Influence of Anodic Oxidation on the Organizational Structure and Corrosion Resistance of Oxide Film on AZ31B Magnesium Alloy. Coatings, 14(3), 271. https://doi.org/10.3390/coatings14030271