Development and Application of a Nano-Gas Sensor for Monitoring and Preservation of Ancient Books in the Library
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2NTs and TiO2NTs/CNTs
2.2. Characterization of TiO2 NTs/CNTs
2.3. Fabrication of Gas Monitoring Sensors
3. Results and Discussion
3.1. Morphology and Phase Analysis of TiO2 NTs/CNTs
3.2. Gas-Sensitive Properties of TiO2 NTs/CNTs
4. Gas-Sensitive Reaction Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, H. Research on the Protection Measures of Ancient Books in University Libraries in the New Era. J. Northwest Adult Educ. Coll. 2022, 1, 99. [Google Scholar]
- Lu, A. Harmful gases in the air to books and their relationship with the humidity of the library. Nandu Xuetan 1997, 2, 96–97. [Google Scholar]
- Borowik, P.; Adamowicz, L.; Tarakowski, R.; Siwek, K.; Grzywacz, T. Odor detection using an E-nose with a reduced sensor array. Sensors 2020, 20, 3542. [Google Scholar] [CrossRef] [PubMed]
- Tomic, M.; Setka, M.; Vojkuvka, L.; Vallejos, S. VOCs sensing by metal oxides, conductive polymers, and carbon-based materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef]
- Mu, S.; Shen, W.; Lv, D.; Song, W.; Tan, R. Inkjet-printed MOS-based MEMS sensor array combined with one-dimensional convolutional neural network algorithm for identifying indoor harmful gases. Sens. Actuators A Phys. 2024, 369, 11520. [Google Scholar] [CrossRef]
- Shi, X.; He, Y.; Gong, T.; Xie, Y.; Chen, J.; Yang, X. Preparation of three-dimensional ZnO nanoflowers and their gas sensing performance to indoor polluted gases. Sens. Microsyst. 2022, 41, 10–13. [Google Scholar]
- Xie, L. Study on Metal-Modified Nano TiO2 and Its Gas Sensing Performance; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2021. [Google Scholar]
- Xu, J.; Chen, Y.; Li, Y.; Shen, J. Application of one-dimensional nanomaterials in gas sensors. Sens. Technol. 2005, 1, 4–6. [Google Scholar]
- Chen, G.; Paronyan, T.M.; Pigos, E.M.; Harutyunyan, A.R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Shen, Y.; Zhou, P.; Hao, F.; Xu, X.; Gao, S.; Wei, D.; Ao, Y.; Shen, Y. Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sens. Actuators B Chem. 2020, 308, 127729. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, G.; Liu, J.; Liang, Q.; Wang, H.; Zhu, Y.; Gao, J.; Lu, H. In2O3-ZnO nanotubes for the sensitive and selective detection of ppb-level NO2 under UV irradiation at room temperature. Sens. Actuators B Chem. 2022, 355, 131322. [Google Scholar] [CrossRef]
- Dang, T.; Nguyen, T.T.O.; Truong, T.H.; Le, A.T.; Nguyen, T.D. Facile synthesis of different ZnO nanostructures for detecting sub-ppm NO2 gas. Mater. Today Commun. 2020, 22, 100826. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Sanchez Casalongue, H.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705. [Google Scholar] [CrossRef]
- Li, M.; Zou, C.; Liang, F.; Hou, E.; Lin, J. Preparation and gas-sensing performance under photoactivation of TiO2 nanotubes/carbon nanotubes/ZnS quantum dots gas-sensitive materials. Mater. Today Commun. 2023, 36, 106487. [Google Scholar] [CrossRef]
- Guo, R.-B. Preparation of g-C3N4 Composite Nanomaterials and Their Photocatalytic Performance; Nanchang Hangkong University: Nanchang, China, 2018. [Google Scholar]
- Huang, D.-G.; Mo, Z.-H.; Quan, S.-Q.; Yang, T.-Z.; Liu, Z.-B.; Liu, M. Preparation and photocatalytic reduction performance of graphene/nano-TiO2 composites. Acta Mater. Compos. Sin. 2016, 33, 155–162. [Google Scholar]
- Giampiccolo, A.; Tobaldi, M.D.; Leonardi, G.S.; Murdoch, B.J.; Seabra, M.P.; Ansell, M.P.; Ansell, M.P.; Neri, G.; Ball, R.J. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B Environ. 2019, 243, 183–194. [Google Scholar] [CrossRef]
- Tong, X. Preparation and Gas Sensing Performance of TiO2 Nanotube Array Membranes for the Main Components of Papermaking Pollution Gases; South China University of Technology: Guangzhou, China, 2017. [Google Scholar]
- Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon Nanotube Sensorsfor Gas and Organic Vapor Detection. Nano Lett. 2023, 3, 929–933. [Google Scholar] [CrossRef]
- Chang, J.; Jiang, D.-G.; Zhan, Z.L.; Song, W.H. Overview of semiconductor metal oxide gas sensing materials. Sens. World 2003, 9, 14–18. [Google Scholar]
- Tian, K. Construction of Metal Oxide Semiconductor Heterojunction and Its Gas Sensing and Photoelectrochemical Performance and Mechanism; Beijing University of Chemical Technology: Beijing, China, 2023. [Google Scholar]
- Santangelo, S.; Faggio, G.; Messina, G.; Fazio, E.; Neri, F.; Neri, G. On the hydrogen sensing mechanism of Pt/TiO2/CNTs based devices. Sens. Actuators B 2013, 178, 473–484. [Google Scholar] [CrossRef]
- Xu, Y.J.; Zhuang, Y.; Fu, X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. J. Phys. Chem. C 2010, 114, 2669–2676. [Google Scholar] [CrossRef]
- De Luca, L.; Donato, A.; Santangelo, S.; Faggio, G.; Messina, G.; Donato, N.; Neri, G. Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites. Int. J. Hydrogen Energy 2012, 37, 842–851. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.Y.; Nam, M.S.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Synergistic effect between UV light and PANI/Co3O4 content on TiO2 composite nanoparticles for room-temperature acetone sensing. Sens. Actuators B Chem. 2023, 375, 132868–132879. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Q.; He, S.; Chen, Z.; Qiu, W.; Yu, Y. Development and Application of a Nano-Gas Sensor for Monitoring and Preservation of Ancient Books in the Library. Coatings 2024, 14, 553. https://doi.org/10.3390/coatings14050553
Wang J, Wang Q, He S, Chen Z, Qiu W, Yu Y. Development and Application of a Nano-Gas Sensor for Monitoring and Preservation of Ancient Books in the Library. Coatings. 2024; 14(5):553. https://doi.org/10.3390/coatings14050553
Chicago/Turabian StyleWang, Jia, Qingyu Wang, Susu He, Zhiyin Chen, Wentong Qiu, and Yunjiang Yu. 2024. "Development and Application of a Nano-Gas Sensor for Monitoring and Preservation of Ancient Books in the Library" Coatings 14, no. 5: 553. https://doi.org/10.3390/coatings14050553
APA StyleWang, J., Wang, Q., He, S., Chen, Z., Qiu, W., & Yu, Y. (2024). Development and Application of a Nano-Gas Sensor for Monitoring and Preservation of Ancient Books in the Library. Coatings, 14(5), 553. https://doi.org/10.3390/coatings14050553