Effect of the Atmosphere on the Properties of Aluminum Anodizing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Pretreatment
2.2. Anodizing
2.3. Structure and Composition of Anodic Films
2.4. Morphology
2.5. Electrochemical Techniques
3. Results and Discussion
4. Discussion of Statistical Analysis
5. Conclusions
- The results from ANOVA show the response variables for the grain size U, thickness Q, and reaction rate V. These response variables are associated with the time, temperature, and the different atmospheres in good agreement. Thus, the thickness of the layer is correlated to the kinetics of the reaction.
- The experiments show a similar linear kinetic behavior in the three systems or atmospheres: they react in the same way, forming the layer uniformly on the surface of the aluminum, but as time passes, there are areas where the aluminum is already occupied, and the reaction passes from linear to parabolic; therefore, the growth of the layer is no longer uniform, and the optimal value for grain size growth was at 30 °C for 20 min with air injection.
- Samples obtained through different atmospheres are completely different on the microstructure; this fact causes the anodized layers to present different characteristics and protective properties.
- With respect to the corrosion properties, samples present different behavior depending on their structural characteristics. Thus, in the potentiodynamic polarization tests, a more corrosion-resistant behavior can be highlighted for the sample 30-20-CO because it has the lowest material loss per year. It also contains the lowest corrosion current in its process.
- At a low temperature of 30 °C, for a short time of 20 min and without air injection, are the optimal values for the linear growth of the anodic layer, where the thickness grows by 7.40 µm. In the potentiodynamic polarization tests, a more corrosion-resistant behavior can be highlighted for the sample 30-20-CO because it has the lowest material loss per year. It also contains the lowest corrosion current in its process, with a higher corrosion potential.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaskell, D.R.; Laughlin, D.E. Introduction to the Thermodynamics of Materials, 6th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Runge, J.M. Anodizing as an Industrial Process. In The Metallurgy of Anodizing Aluminum; Springer International Publishing: Cham, Switzerland, 2018; pp. 149–190. [Google Scholar] [CrossRef]
- Rashid, K.H.; Khadom, A.A.; Mahood, H.B. Aluminum ASA 6061 Anodizing Process by Chromic Acid Using Box–Wilson Central Composite Design: Optimization and Corrosion Tendency. Met. Mater. Int. 2021, 27, 4059–4073. [Google Scholar] [CrossRef]
- Benmohamed, M.; Benmounah, A.; Haddad, A.; Yahi, S. The effect of inhibiting molybdate used in anodizing-conversion treatment to improve corrosion protection of AA2030 aluminum alloy in different steps. J. Eng. Appl. Sci. 2022, 69, 40. [Google Scholar] [CrossRef]
- Kikuchi, T.; Suzuki, Y.; Iwai, M.; Suzuki, R.O. Anodizing Aluminum and Its Alloys in Etidronic Acid to Enhance Their Corrosion Resistance in a Sodium Chloride Solution. J. Electrochem. Soc. 2020, 167, 121502. [Google Scholar] [CrossRef]
- Gower, C.H.R.; O’Brien, S. Electrolyte Containing Sulphuric Acid. UK Patent 290901, 25 October 1927. [Google Scholar]
- Ono, S.; Saito, M.; Asoh, H. Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 2005, 51, 827–833. [Google Scholar] [CrossRef]
- Parkhutik, V.P. Study of Aluminium Anodization in Sulphuric and Chromic Acid Solutions-II. Oxide Morphology and Structure. Electrochim. Acta 1990, 35, 961–966. [Google Scholar] [CrossRef]
- Sulka, G.D.; Stroobants, S.; Moshchalkov, V.; Borghs, G.; Celis, J.-P. Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid. J. Electrochem. Soc. 2002, 149, D97. [Google Scholar] [CrossRef]
- Ono, S.; Asoh, H. A new perspective on pore growth in anodic alumina films. Electrochem. Commun. 2021, 124, 106972. [Google Scholar] [CrossRef]
- Roshani, M.; Rouhaghdam, A.S.; Aliofkhazraei, M.; Astaraee, A.H. Optimization of mechanical properties for pulsed anodizing of aluminum. Surf. Coat. Technol. 2017, 310, 17–24. [Google Scholar] [CrossRef]
- Saffari, H.; Sohrabi, B.; Noori, M.R.; Bahrami, H.R.T. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes. Appl. Surf. Sci. 2018, 435, 1322–1328. [Google Scholar] [CrossRef]
- Javaherdashti, R. Microbiologically Influenced Corrosion—An Engineering Insight; Springer: London, UK, 2008. [Google Scholar]
- Kim, M.; Choi, E.; So, J.; Shin, J.-S.; Chung, C.-W.; Maeng, S.-J.; Yun, J.-Y. Improvement of corrosion properties of plasma in an aluminum alloy 6061-T6 by phytic acid anodization temperature. J. Mater. Res. Technol. 2020, 11, 219–226. [Google Scholar] [CrossRef]
- Hernández, A.; de la Paz Guillón, M.; García, L. La metodología de Taguchi en el control estadístico de la Calidad. Filosofia 2015, 23, 65–83. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction, 3rd ed.; Addison-Wesley: Reading, MA, USA, 1956. [Google Scholar]
- Jones, D.A. Principles and Prevention of Corrosion, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
Elemento | S | Fe | Cu | Mn | Mg | Cr | Ni | Zn | Ti | Co | Al |
---|---|---|---|---|---|---|---|---|---|---|---|
% by weight | 0.420 | 0.275 | 0.033 | 0.018 | 0.493 | 0.013 | 0.007 | 0.027 | 0.018 | 0.005 | Bal |
Operating Variables | Fixed | Manipulable |
---|---|---|
Voltage (V) | ✓ | |
Current Density (i) | ✓ | |
Cell Type | ✓ | |
pH | ✓ | |
Interelectrode Distance (d) | ✓ | |
Electrolyte | ✓ | |
Electrolyte Concentration [ ] | ✓ | |
Treatment Time (t) |
| |
Electrolyte Temperature (T) |
| |
Agitation Speed (v) | ✓ | |
Gas |
|
Table | A Low | B Low | C Low |
---|---|---|---|
1 | A Low | B Low | C Low |
2 | A Low | B High | C High |
3 | A High | B Low | C High |
Variable | Low (−1) | Intermediate | High (+1) |
---|---|---|---|
Temperature (T) | 30 °C | 45 °C | 60 °C |
Treatment time (t) | 30 min | 40 min | 60 min |
Gas | No air | No air | No air |
No air | With air | With air | |
With oxygen | With oxygen | With oxygen |
Element | Atomic % | ||
---|---|---|---|
30-60-SA | 30-20-CA | 30-20-CO | |
Carbon | 61.60 | 57.05 | 54.86 |
Oxygen | 27.57 | 32.67 | 34.30 |
Silicon | 0.01 | 0.25 | 0.83 |
Sulfur | 10.17 | 0.52 | 0.33 |
Aluminum | 0.64 | 9.51 | 9.69 |
100 | 100 | 100 |
Sample | Icorr (A/cm2) | Ecorr (V) | βa (mV) | βc (mV) | Corrosion Rate MPY (Mils per Year) |
---|---|---|---|---|---|
30-20-SA | 2.0327 × 10−6 | −0.9891 | 342.65 | −78.84 | 3.7941 × 10−7 |
30-60-SA | 9.8137 × 10−8 | −0.90115 | −231.53 | 45.911 | 1.0380 × 10−7 |
60-20-SA | 2.3762 × 10−7 | −0.69415 | 23.214 | −284 | 4.4352 × 10−8 |
60-60-SA | 2.2916 × 10−8 | −0.77737 | 70.197 | −95.838 | 4.2773 × 10−9 |
30-20-CA | 2.9719 × 10−8 | −0.1886 | 62.925 | −79.81 | 5.5471 × 10−9 |
30-60-CA | 4.4063 × 10−7 | −0.69703 | 22.375 | −563.12 | 8.2245 × 10−8 |
60-20-CA | 2.9470 × 10−8 | −0.80927 | 70.07 | −139.93 | 5.5006 × 10−9 |
60-60-CA | 2.1897 × 10−7 | −0.68639 | 24.807 | −401.06 | 4.0871 × 10−8 |
30-20-CO | 6.3584 × 10−13 | −0.24103 | −178.71 | 528.16 | 6.7253 × 10−13 |
30-60-CO | 3.0776 × 10−7 | −0.72403 | 43.62 | −953.58 | 5.7444 × 10−8 |
60-20-CO | 2.3397 × 10−7 | −0.74397 | 44.787 | −466.87 | 4.3671 × 10−8 |
60-60-CO | 3.5176 × 10−7 | −0.72688 | 37.626 | −594.76 | 6.5657 × 10−8 |
Variables | Answer | ||||||||
---|---|---|---|---|---|---|---|---|---|
Real | Staggered | ||||||||
Sample | Temperature (°C) | Time (min) | Condition | X1 | X2 | X3 | Thickness Size (µm) | Crystallite Size (τ) | Reaction Rate (MPY) |
1 | 60 | 60 | SA | 2 | 2 | 1 | 3.2 | 0.08 | 4.28 × 10−9 |
2 | 60 | 60 | CA | 2 | 2 | 2 | 1.4 | 0.16 | 4.09 × 10−8 |
3 | 30 | 60 | CO | 1 | 2 | 3 | 3.1 | 0.35 | 5.74 × 10−8 |
4 | 30 | 20 | CA | 1 | 1 | 2 | 3.2 | 0.04 | 5.55 × 10−9 |
5 | 60 | 20 | CA | 2 | 1 | 2 | 2.7 | 1.11 | 5.50 × 10−9 |
6 | 60 | 20 | CO | 2 | 1 | 3 | 1.7 | 1.83 | 4.37 × 10−8 |
7 | 30 | 60 | CA | 1 | 2 | 2 | 5.5 | 0.63 | 8.22 × 10−8 |
8 | 30 | 60 | SA | 1 | 2 | 1 | 5.2 | 1.88 | 1.04 × 10−7 |
9 | 60 | 20 | SA | 2 | 1 | 1 | 6.1 | 0.17 | 4.44 × 10−8 |
10 | 30 | 20 | CO | 1 | 1 | 3 | 3.5 | 0.94 | 6.73 × 10−13 |
11 | 30 | 20 | SA | 1 | 1 | 1 | 7.4 | 0.72 | 3.79 × 10−7 |
12 | 60 | 60 | CO | 2 | 2 | 3 | 1.4 | 1.83 | 6.57 × 10−8 |
Response Variable | Source of Variation | Sum of Squares | Degrees of Freedom | Mean Squares | F | p |
---|---|---|---|---|---|---|
Q | Temperature | 10.830 | 1 | 10.830 | 8.85 | 0.021 |
Time | 1.920 | 1 | 1.920 | 1.57 | 0.521 | |
Condition | 20.105 | 2 | 10.053 | 8.22 | 0.015 | |
Error | 8.565 | 7 | 1.224 | |||
Total | 41.420 | 11 | ||||
U | Temperature | 0.03203 | 1 | 0.03203 | 0.05 | 0.826 |
Time | 0.00120 | 1 | 0.00120 | 0.00 | 0.966 | |
Condition | 1.19152 | 2 | 0.595758 | 0.97 | 0.426 | |
Error | 4.31782 | 7 | 0.616831 | |||
Total | 5.54257 | 11 | ||||
V | Temperature | 1.944 | 1 | 1.944 | 0.46 | 0.520 |
Time | 1.345 | 1 | 1.345 | 0.32 | 0.591 | |
Condition | 3.164 | 2 | 1.582 | 0.37 | 0.702 | |
Error | 29.695 | 7 | 4.242 | |||
Total | 36.148 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltierra-Costeira, G.; Camporredondo-Saucedo, J.E.; García-Rentería, M.A.; Falcón-Franco, L.A.; Castruita-Ávila, L.G.; García-Lara, A.M. Effect of the Atmosphere on the Properties of Aluminum Anodizing. Coatings 2024, 14, 1166. https://doi.org/10.3390/coatings14091166
Baltierra-Costeira G, Camporredondo-Saucedo JE, García-Rentería MA, Falcón-Franco LA, Castruita-Ávila LG, García-Lara AM. Effect of the Atmosphere on the Properties of Aluminum Anodizing. Coatings. 2024; 14(9):1166. https://doi.org/10.3390/coatings14091166
Chicago/Turabian StyleBaltierra-Costeira, Gabriela, Jesús Emilio Camporredondo-Saucedo, Marco Arturo García-Rentería, Lázaro Abdiel Falcón-Franco, Laura Guadalupe Castruita-Ávila, and Adrián Moisés García-Lara. 2024. "Effect of the Atmosphere on the Properties of Aluminum Anodizing" Coatings 14, no. 9: 1166. https://doi.org/10.3390/coatings14091166
APA StyleBaltierra-Costeira, G., Camporredondo-Saucedo, J. E., García-Rentería, M. A., Falcón-Franco, L. A., Castruita-Ávila, L. G., & García-Lara, A. M. (2024). Effect of the Atmosphere on the Properties of Aluminum Anodizing. Coatings, 14(9), 1166. https://doi.org/10.3390/coatings14091166