A New Process for Efficient Non-Destructive Metal-Activated Composite Plating of Ni-P-Al2O3 on Titanium Base and Its Performance Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Treatment
2.2.1. Sample Substrate Etching
2.2.2. Substrate Activation
2.2.3. Nanoparticle Pre-Activation
2.3. Electroless Composite Plating Ni-P/Al2O3
2.4. Method Description
3. Results and Discussion
3.1. Substrates before and after Degreasing
3.2. Activation Analysis
3.2.1. Activation Analysis of the Substrate
3.2.2. Pre-Activation Analysis of Nanoparticles
3.3. Optimization of Composite Plating Process Parameters
3.4. The Analysis of the Composite Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Hou, J.; Luan, J.; Xu, D.; Sun, H.; Sun, J. The Corrosion Behaviors of an As-Rolled Mg-8Li (in wt.%) Alloy in Two Differently Concentrated NaCl Solutions. Coatings 2022, 12, 406. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, K.; Shi, J.; Shen, Y.; Li, P.; Lu, J. High-temperature oxidation behavior of TA15 aerospace titanium alloy at 500 °C and 800 °C. J. Mater. Res. Technol. 2024, 30, 3355–3366. [Google Scholar] [CrossRef]
- Song, W.W.; Feng, C.; Zhu, L.J.; Zhang, F.F. Progress of Laser Cladding Wear Resistant Coating on Titanium Alloy Surface: A Review. Mater. Sci. Forum 2021, 6114, 521–527. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, D.; Zhang, Y.; Deng, G.; Fan, M.; Chen, D.; Sun, L.; Zhang, Z. The Microstructure and Mechanical Properties of TA1-Low Alloy Steel Composite Plate Manufactured by Explosive Welding. Metals 2020, 10, 663. [Google Scholar] [CrossRef]
- Huang, P.; Zou, B.; Zhang, Y.; Niu, X.; Wang, Y. Synthesis of rare earth silicate thermal barrier coating materials (YxYb2−xSiO5) and application on the surface of titanium alloy. Inorg. Chem. Commun. 2022, 135, 109129. [Google Scholar] [CrossRef]
- Jingshuang, Z.; Zhelong, Y.; Maozhong, A.; Zhenmi, T.; Mengchu, L. A New Process of Electroplating on Titanium and Titanium Alloy for Aerospace. Trans. IMF 2017, 74, 25–27. [Google Scholar] [CrossRef]
- Banjo, N.; Sasaki, T.; Hono, K. Microstructure control of Ti-based conversion coatings for optimizing organic coating properties in A6063 and A3003 alloys. Surf. Coat. Technol. 2023, 468, 129735. [Google Scholar] [CrossRef]
- Zheng, H.; Yin, Y.; Li, R.; Liu, C.; Chen, Q. Preparation and properties of FeS/iron-based self-lubricating materials by chemical nickel plating-mechanical alloying. Ind. Lubr. Tribol. 2024, 76, 658–665. [Google Scholar] [CrossRef]
- Vaibhav, N.; Satyajit, C. Evaluation of microstructural, mechanical, and tribological characteristics of Ni-B-W-SiC electroless composite coatings involving multi-pass scratch test. J. Mater. Charact. 2021, 180, 111414. [Google Scholar] [CrossRef]
- Boschloo, K.G.; Goossens, A.; Schoonman, J. Photoelectrochemical Study of Thin AnataseTiO2 Films Prepared by Metallorganic Chemical Vapor Deposition. J. Electrochem. Soc. 2019, 144, 1311–1317. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Q.; Yang, Z.; Li, J.; Guo, Y.; Yang, W.; Xu, D. Effects of Micro-arc Oxidation/Multi-arc Ion Plating Composite Treatment on Microstructure and Properties of TC4 Titanium Alloy. J. Mater. Eng. Perform. 2023, 33, 1391–1400. [Google Scholar] [CrossRef]
- Kowalski, S.; Gonciarz, W.; Belka, R.; Góral, A.; Chmiela, M.; Lechowicz, Ł.; Kaca, W.; Żórawski, W. Plasma-Sprayed Hydroxyapatite Coatings and Their Biological Properties. Coatings 2022, 12, 1317. [Google Scholar] [CrossRef]
- Vlcak, P.; Fojt, J.; Koller, J.; Drahokoupil, J.; Smola, V. Surface pre-treatments of Ti-Nb-Zr-Ta beta titanium alloy: The effect of chemical, electrochemical and ion sputter etching on morphology, residual stress, corrosion stability and the MG-63 cell response. Results Phys. 2021, 28, 104613. [Google Scholar] [CrossRef]
- Wei, X.C.; Wang, J.B.; Zhang, X.M.; Wang, X.G. Study on the Development of Pretreatment Processes of Electroless Nickel Plating on Al Alloy Surface. Mater. Sci. Forum 2014, 809–810, 412–418. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, F.; Cai, Z.; Hu, R. Process and performance of electroless nickel plating on AZ91D magnesium alloy. Anti-Corros. Methods Mater. 2017, 64, 162–169. [Google Scholar] [CrossRef]
- Allahkaram, S.R.; Salmi, S.; Tohidlou, E. An investigation on effects of tio2 nano-particles incorporated in electroless nip coatings’ properties. Int. J. Mod. Phys. Conf. Ser. 2012, 5, 833–840. [Google Scholar] [CrossRef]
- Su, W. Microhardness of Electroless Composite Coating of Ni-P with SiC Nano-Particles. Adv. Mater. Res. 2013, 2290, 223–226. [Google Scholar] [CrossRef]
- Dang, X.; Cui, K.; Zhuang, J.; Zhong, L.; He, Y.; Li, G.; Du, G.; Yang, Z.; Pei, S.; Li, S. A new process for environmentally friendly and non-destructive activation of electroless nickel plating on alumina ceramics. Mater. Today Commun. 2023, 35, 105506. [Google Scholar] [CrossRef]
- Ma, H.; Feng, Y.; Li, N.; Tan, C.; Zhang, L. Effect of MoS2 nanoparticles on the properties of Ni-W-SiC composite coatings. Int. J. Electrochem. Sci. 2024, 19, 100654. [Google Scholar] [CrossRef]
- Jia, Y.; Lai, J.; Yu, J.; Qi, H.; Zhang, Y.; He, H. Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface. Chin. J. Mech. Eng. 2024, 37, 13. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, W.; Wang, X.; Zhao, Y.; Ma, P.; Jiang, W.; Song, G. The Microstructure and Tribological Behavior of Ultrasonic Electroless Ni-P Plating on TC4 Titanium Alloy with Heat-Treatment. Ferroelectrics 2022, 589, 1–11. [Google Scholar] [CrossRef]
- CCui, C.; Gu, A.; Xiao, M.; Xu, L.; Li, H.; Yang, Z.; Dong, T.; Gao, H.; Jiang, F. A novel in-situ activation method on titanium alloys for electroless plating. Mater. Lett. 2020, 276, 128275. [Google Scholar] [CrossRef]
- Che, L.; Xiao, M.; Xu, H.; Wang, B.; Jin, Y. Enhanced Corrosion Resistance and Microhardness of Titanium with Electroless Deposition Ni-W-Cr-P Coating. Mater. Manuf. Process. 2013, 28, 899–904. [Google Scholar] [CrossRef]
- Yang, Z.D.; Wu, D.; Liu, M.F. Electroless Ni-P-PTFE Composite Coatings on Titanium Alloy and Their Tribological Properties. Adv. Mater. Res. 2011, 1335, 12–17. [Google Scholar] [CrossRef]
- Rani, R.U.; Sharma, A.K.; Minu, C.; Poornima, G.; Tejaswi, S. Studies on black electroless nickel coatings on titanium alloys for spacecraft thermal control applications. J. Appl. Electrochem. 2010, 40, 333–339. [Google Scholar] [CrossRef]
- Khalid, A.R.; Khammas, H.A.; Kais, A.L. Enhanced alumina substrate wear resistance via electroless NiP–TiC nanocomposite coating. Results Mater. 2023, 20, 100466. [Google Scholar] [CrossRef]
- Xu, J.; Gu, Y.; Fu, T.; Zhang, X.; Zhang, H. Research on the Heating Process of CFRP Circular Tubes Based on Electromagnetic Induction Heating Method. Polymers 2023, 15, 3039. [Google Scholar] [CrossRef]
- Cervera-Gabalda, L.; Gómez-Polo, C. Magnetic carbon Fe3O4 nanocomposites synthesized via Magnetic Induction Heating. Sci. Rep. 2023, 13, 7244. [Google Scholar] [CrossRef]
- Harada, Y.; Suzuki, T.; Hirano, K.; Nakagawa, N.; Waku, Y. Creep Behaviors of In-Situ Single-Crystal Al2O3/YAG and Al2O3/GAP Eutectic Composites. J. Ceram. Soc. Jpn. 2004, 112, S294–S298. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, M.; Muñoz, A.; Domínguez-Rodríguez, A. Creep study on Alumina and Alumina/SWCNT nanocomposites. J. Eur. Ceram. Soc. 2018, 38, 5497–5502. [Google Scholar] [CrossRef]
Reagent | Concentration |
---|---|
NaOH | 25~40 g/L |
Na2CO3 | 40~45 g/L |
Na3PO4 | 40~45 g/L |
Reagent | Concentration |
---|---|
NiSO4·6H2O | 10 g/L |
NaH2PO2·H2O | 60 g/L |
Reagent | Concentration |
---|---|
NiSO4·6H2O | 25~30 g/L |
NaH2PO2·H2O | 20~40 g/L |
CH3COONa·3H2O | 10~20 g/L |
C6H5Na3O7·2H2O | 25~30 g/L |
Al2O3 nanoparticle | 1.5~2.5 g/L |
NiSO4·6H2O | 25~30 g/L |
Level | Factors A | Factors B | Factors C |
---|---|---|---|
Time/min | Nanoparticle Addition/(g/L) | Temperature/°C | |
1 | 30 | 1.5 | 85 |
2 | 60 | 2 | 90 |
3 | 90 | 2.5 | 95 |
Test No. | A | B | C | Bonding Score | Friction Factor Score | Aggregate Score |
---|---|---|---|---|---|---|
1 | 30 | 1.5 | 85 | 6.5 | 8 | 14.5 |
2 | 30 | 2 | 90 | 6.5 | 6.5 | 13 |
3 | 30 | 2.5 | 95 | 6.5 | 7 | 13.5 |
4 | 60 | 2 | 95 | 8.5 | 8 | 16.5 |
5 | 60 | 2.5 | 85 | 7.5 | 8 | 15.5 |
6 | 60 | 1.5 | 90 | 9 | 8.5 | 17.5 |
7 | 90 | 2.5 | 90 | 7.5 | 6.5 | 14 |
8 | 90 | 1.5 | 95 | 6 | 6.5 | 12.5 |
9 | 90 | 2 | 85 | 6 | 6 | 12 |
Average value 1 | 13.67 | 15.00 | 14.83 | |||
Average value 2 | 16.50 | 13.67 | 13.83 | |||
Average value 3 | 12.83 | 14.33 | 14.16 | |||
Extremely poor | 3.67 | 1.33 | 1.00 |
Samples | Untreated (xHV500gf) | Ni/Al2O3 Composite Layer (xHV500gf) |
---|---|---|
Point1 | 213.8 ± 0.5 | 680.6 ± 0.5 |
Point2 | 203.0 ± 0.5 | 691.8 ± 0.5 |
Point3 | 197.6 ± 0.5 | 709.7 ± 0.5 |
Point4 | 192.4 ± 0.5 | 671.1 ± 0.5 |
Point5 | 193.7 ± 0.5 | 689.5 ± 0.5 |
Average value | 200.1 ± 0.5 | 688.5 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, K.; Gao, J.; Li, S.; Leng, X.; Zhong, L.; Qiang, R. A New Process for Efficient Non-Destructive Metal-Activated Composite Plating of Ni-P-Al2O3 on Titanium Base and Its Performance Research. Coatings 2024, 14, 1203. https://doi.org/10.3390/coatings14091203
Cui K, Gao J, Li S, Leng X, Zhong L, Qiang R. A New Process for Efficient Non-Destructive Metal-Activated Composite Plating of Ni-P-Al2O3 on Titanium Base and Its Performance Research. Coatings. 2024; 14(9):1203. https://doi.org/10.3390/coatings14091203
Chicago/Turabian StyleCui, Kaifang, Jin Gao, Siqi Li, Xue Leng, Liang Zhong, and Rongming Qiang. 2024. "A New Process for Efficient Non-Destructive Metal-Activated Composite Plating of Ni-P-Al2O3 on Titanium Base and Its Performance Research" Coatings 14, no. 9: 1203. https://doi.org/10.3390/coatings14091203
APA StyleCui, K., Gao, J., Li, S., Leng, X., Zhong, L., & Qiang, R. (2024). A New Process for Efficient Non-Destructive Metal-Activated Composite Plating of Ni-P-Al2O3 on Titanium Base and Its Performance Research. Coatings, 14(9), 1203. https://doi.org/10.3390/coatings14091203