Evaluating the Application of Cold Spray Technology for the Deposition of Copper–Graphene Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder Preparation
2.2. Medium- and High-Pressure CS Depositions
2.2.1. Mid-Pressure CS Trials
2.2.2. High-Pressure CS Trials
2.3. Characterization Techniques
2.3.1. Particle Size Distribution
2.3.2. Microscopical Observations
2.3.3. Porosity Measurements
2.3.4. Raman Spectroscopy
2.3.5. Microfocus X-Ray CT Analysis
2.3.6. Microhardness Measurements
3. Results
3.1. Powder Characterization
3.2. Deposit Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2DMMC | 2D material-based metal matrix composite |
MMC | metal matrix composite |
Gr | graphene |
Cu | copper |
AM | additive manufacturing |
CS | cold spray |
2D materials | two-dimensional materials |
PSD | particle size distribution |
CVD | chemical vapor deposition |
SEM | scanning electron microscope |
EDS | dispersive x-ray spectroscopy |
OM | optical microscopy |
CFD | Computational Fluid Dynamics |
KSS | Kinetic Spray Solutions |
References
- Qu, X.; Zhang, L.; Wu, M.; Ren, S. Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog. Nat. Sci. Mater. Int. 2011, 21, 189–197. [Google Scholar] [CrossRef]
- Sun, Q.; Zhi, G.; Zhou, S.; Dong, X.; Shen, Q.; Tao, R.; Qi, J. Advanced Design and Manufacturing Approaches for Structures with Enhanced Thermal Management Performance: A Review. Adv. Mater. Technol. 2024, 9, 2400263. [Google Scholar] [CrossRef]
- Silvain, J.-F.; Veillere, A.; Heintz, J.-M.; Vincent, C.; Guillemet, T.; Lacombe, G.; Lu, Y.; Chandra, N. The role of controlled interfaces in the thermal management of copper–carbon composites. Emerg. Mater. Res. 2012, 1, 75–88. [Google Scholar] [CrossRef]
- Singer, F.; Deisenroth, D.C.; Hymas, D.M.; Ohadi, M.M. Additively manufactured copper components and composite structures for thermal management applications. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 174–183. [Google Scholar]
- Wu, F.; Tian, H.; Shen, Y.; Zhu, Z.-Q.; Liu, Y.; Hirtz, T.; Wu, R.; Gou, G.; Qiao, Y.; Yang, Y.; et al. High Thermal Conductivity 2D Materials: From Theory and Engineering to Applications. Adv. Mater. Interfaces 2022, 9, 2200409. [Google Scholar] [CrossRef]
- Zarei, F.; Sheibani, S. Comparative study on carbon nanotube and graphene reinforced Cu matrix nanocomposites for thermal management applications. Diam. Relat. Mater. 2021, 113, 108273. [Google Scholar] [CrossRef]
- Hidalgo-Manrique, P.; Lei, X.; Xu, R.; Zhou, M.; Kinloch, I.A.; Young, R.J. Copper/graphene composites: A review. J. Mater. Sci. 2019, 54, 12236–12289. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, L.; Wang, J.; Chen, B.; Qi, L.; Li, H. Collaborative enhancement of thermal diffusivities and mechanical properties of Csf-Cu/Mg composites via introducing Cu coating with different thicknesses. J. Magnes. Alloys 2024, in press. [Google Scholar] [CrossRef]
- Shao, P.; Yang, W.; Zhang, Q.; Meng, Q.; Tan, X.; Xiu, Z.; Qiao, J.; Yu, Z.; Wu, G. Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Compos. Part Appl. Sci. Manuf. 2018, 109, 151–162. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, Q.; Xin, L.; Qiao, J.; Zou, J.; Shao, P.; Yu, Z.; Zhang, Q.; Wu, G. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method. J. Alloys Compd. 2018, 732, 748–758. [Google Scholar] [CrossRef]
- Das, S.; Kordijazi, A.; Akbarzadeh, O.; Rohatgi, P.K. An innovative process for dispersion of graphene nanoparticles and nickel spheres in A356 alloy using pressure infiltration technique. Eng. Rep. 2020, 2, e12110. [Google Scholar] [CrossRef]
- Assadi, H.; Kreye, H.; Gärtner, F.; Klassen, T. Cold spraying—A materials perspective. Acta Mater. 2016, 116, 382–407. [Google Scholar] [CrossRef]
- Singh, H.; Sidhu, T.S.; Kalsi, S.B.S. Cold spray technology: Future of coating deposition processes. Fract. Struct. Integr. 2012, 6, 69–84. [Google Scholar] [CrossRef]
- Bagherifard, S.; Monti, S.; Zuccoli, M.V.; Riccio, M.; Kondás, J.; Guagliano, M. Cold spray deposition for additive manufacturing of freeform structural components compared to selective laser melting. Mater. Sci. Eng. A 2018, 721, 339–350. [Google Scholar] [CrossRef]
- Choi, J.; Okimura, N.; Yamada, T.; Hirata, Y.; Ohtake, N.; Akasaka, H. Deposition of graphene–copper composite film by cold spray from particles with graphene grown on copper particles. Diam. Relat. Mater. 2021, 116, 108384. [Google Scholar] [CrossRef]
- Díaz, E.T.; Silvello, A.; Ramirez, E.R.; Vaz, R.F.; Cano, I.G. Graphene nanoplatelets in titanium coatings deposited by cold spray: Mechanical properties. J. Mater. Res. Technol. 2024, 34, 1549–1558. [Google Scholar] [CrossRef]
- Bagherifard, S.; Kondas, J.; Monti, S.; Cizek, J.; Perego, F.; Kovarik, O.; Lukac, F.; Gaertner, F.; Guagliano, M. Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications. Mater. Des. 2021, 203, 109575. [Google Scholar] [CrossRef]
- Guo, D.; Kazasidis, M.; Hawkins, A.; Fan, N.; Leclerc, Z.; MacDonald, D.; Nastic, A.; Nikbakht, R.; Ortiz-Fernandez, R.; Rahmati, S.; et al. Cold Spray: Over 30 Years of Development Toward a Hot Future. J. Therm. Spray Technol. 2022, 31, 866–907. [Google Scholar] [CrossRef]
- Gärtner, F.; Stoltenhoff, T.; Schmidt, T.; Kreye, H. The cold spray process and its potential for industrial applications. J. Therm. Spray Technol. 2006, 15, 223–232. [Google Scholar] [CrossRef]
- Bagherifard, S.; Guagliano, M. Fatigue performance of cold spray deposits: Coating, repair and additive manufacturing cases. Int. J. Fatigue 2020, 139, 105744. [Google Scholar] [CrossRef]
- Yin, S.; Cavaliere, P.; Aldwell, B.; Jenkins, R.; Liao, H.; Li, W.; Lupoi, R. Cold spray additive manufacturing and repair: Fundamentals and applications. Addit. Manuf. 2018, 21, 628–650. [Google Scholar] [CrossRef]
- Pattison, J.; Celotto, S.; Morgan, R.; Bray, M.; O’Neill, W. Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication. Int. J. Mach. Tools Manuf. 2007, 47, 627–634. [Google Scholar] [CrossRef]
- Assadi, H.; Schmidt, T.; Richter, H.; Kliemann, J.-O.; Binder, K.; Gärtner, F.; Klassen, T.; Kreye, H. On Parameter Selection in Cold Spraying. J. Therm. Spray Technol. 2011, 20, 1161–1176. [Google Scholar] [CrossRef]
- Nourian, A.; Schwartz, T.; Boese, S.; Müftü, S. Effects of Process Parameters on Cold Spray Deposition of Al-6061 Alloy. J. Therm. Spray Technol. 2022, 31, 2517–2536. [Google Scholar] [CrossRef]
- Ghelichi, R.; Guagliano, M. Coating by the Cold Spray Process: A state of the art. Fract. Struct. Integr. 2009, 3, 30–44. [Google Scholar] [CrossRef]
- Liu, Q.; Gong, C.; Zhou, C.; Liang, T.; Hao, Z.; Wang, Z.; Tian, X. Comparative Analysis of Mechanical and Electrical Properties of Graphene/Copper Composite Coating on PEEK via Cold Spray with Varied Nozzle Speed. J. Therm. Spray Technol. 2024, 33, 2209–2226. [Google Scholar] [CrossRef]
- Prasad, K.; Rahman Rashid, R.A.; Hutasoit, N.; Palanisamy, S.; Hameed, N. Fabrication of Metal/Graphene Composites via Cold Spray Process: State-of-the-Art and the Way Forward. C—J. Carbon Res. 2022, 8, 65. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, Z.; Ekoi, E.J.; Wang, J.J.; Dowling, D.P.; Nicolosi, V.; Lupoi, R. Novel cold spray for fabricating graphene-reinforced metal matrix composites. Mater. Lett. 2017, 196, 172–175. [Google Scholar] [CrossRef]
- Huang, J.; Yan, X.; Chang, C.; Xie, Y.; Ma, W.; Huang, R.; Zhao, R.; Li, S.; Liu, M.; Liao, H. Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology. Surf. Coat. Technol. 2020, 395, 125936. [Google Scholar] [CrossRef]
- D792 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. Available online: https://www.astm.org/d0792-20.html (accessed on 27 November 2024).
- Alidokht, S.A.; Wu, L.; Bessette, S.; Chromik, R.R. Microstructure and tribology of cold spray additively manufactured multimodal Ni-WC metal matrix composites. Wear 2024, 538, 205218. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, J.; Cui, X.; Wu, J.; Li, T.; Xiong, T. Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique. J. Therm. Spray Technol. 2016, 25, 1020–1028. [Google Scholar] [CrossRef]
- Perard, T.; Sova, A.; Robe, H.; Robin, V.; Zedan, Y.; Bocher, P.; Feulvarch, E. Friction stir processing of austenitic stainless steel cold spray coating deposited on 304L stainless steel substrate: Feasibility study. Int. J. Adv. Manuf. Technol. 2021, 115, 2379–2393. [Google Scholar] [CrossRef]
- Rokni, M.R.; Nutt, S.R.; Widener, C.A.; Champagne, V.K.; Hrabe, R.H. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray. J. Therm. Spray Technol. 2017, 26, 1308–1355. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, Y.; Yu, T.; Shen, Z. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291. [Google Scholar] [CrossRef]
- Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett. 2007, 7, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Beams, R.; Cançado, L.G.; Novotny, L. Raman characterization of defects and dopants in graphene. J. Phys. Condens. Matter 2015, 27, 083002. [Google Scholar] [CrossRef]
- Mohiuddin, T.M.G.; Lombardo, A.; Nair, R.R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D.M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Nan, H.Y.; Ni, Z.H.; Wang, J.; Zafar, Z.; Shi, Z.X.; Wang, Y.Y. The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 2013, 44, 1018–1021. [Google Scholar] [CrossRef]
- Sun, W.; Tan, A.W.-Y.; Bhowmik, A.; Xue, F.; Marinescu, I.; Liu, E. Evaluation of cold sprayed graphene nanoplates–Inconel 718 composite coatings. Surf. Coat. Technol. 2019, 378, 125065. [Google Scholar] [CrossRef]
- Neo, R.G.; Tham, N.Y.S.; Wu, K.; Puthan Veetil, S.; Tan, S.C.; Zhou, W. Evaluation of Powders for Cold Spray Coatings Through Study of Single Particle Impact. In Proceedings of the 2nd International Conference on Advanced Surface Enhancement (INCASE 2021); Wei, Y., Chng, S., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 163–167. ISBN 9789811657627. [Google Scholar]
Test Type | Gas Type | Pressure (Bar) | Temperature (°C) | Standoff Distance (mm) | Step Size (mm) | Nozzle Velocity (mm/s) | Feed Rate (rpm) |
---|---|---|---|---|---|---|---|
High-P | 45 | 800 | 40 | 1.2 | 50 | 10 | |
Mid-P | 30 | 750 | 40 | 3 | 17 | 1.72 |
Sample ID | ||
---|---|---|
Mid-P | 0.2421 | 0.7304 |
High-P | 0.2248 | 0.6334 |
Powder | 0.2421 | 0.6651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarei, F.; Ardeshiri Lordejani, A.; Ruan, S.; Yin, S.; Guagliano, M.; Lupoi, R.; Bagherifard, S. Evaluating the Application of Cold Spray Technology for the Deposition of Copper–Graphene Composite Coatings. Coatings 2025, 15, 153. https://doi.org/10.3390/coatings15020153
Zarei F, Ardeshiri Lordejani A, Ruan S, Yin S, Guagliano M, Lupoi R, Bagherifard S. Evaluating the Application of Cold Spray Technology for the Deposition of Copper–Graphene Composite Coatings. Coatings. 2025; 15(2):153. https://doi.org/10.3390/coatings15020153
Chicago/Turabian StyleZarei, Fatemeh, Amir Ardeshiri Lordejani, Siyuan Ruan, Shuo Yin, Mario Guagliano, Rocco Lupoi, and Sara Bagherifard. 2025. "Evaluating the Application of Cold Spray Technology for the Deposition of Copper–Graphene Composite Coatings" Coatings 15, no. 2: 153. https://doi.org/10.3390/coatings15020153
APA StyleZarei, F., Ardeshiri Lordejani, A., Ruan, S., Yin, S., Guagliano, M., Lupoi, R., & Bagherifard, S. (2025). Evaluating the Application of Cold Spray Technology for the Deposition of Copper–Graphene Composite Coatings. Coatings, 15(2), 153. https://doi.org/10.3390/coatings15020153