Repair Bond Strength and Surface Roughness Evaluation of CAD/CAM Materials After Various Surface Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Control
2.2. Er:YAG Laser
2.3. Sandblasting
2.4. Bur Grinding
2.5. Shear Bond Strength Evaluation (SBS)
2.6. Surface Roughness Evaluation
2.7. Failure Mode Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD/CAM | Computer-aided Design/Computer-aided Manufacturing |
Er:YAG | erbium-doped yttrium aluminum garnet |
UDMA | urethane dimethacrylate |
Bis-MEPP | bisphenol A-glycidyl methacrylate-phosphoric acid ester |
DMA | dimethylacrylamide |
10-MDTP | 10-methacryloyloxydecyl dihydrogen phosphate |
10-MDP | 10-methacryloyloxydecyl dihydrogen phosphate |
4-MET | 4-methacryloyloxyethyl trimellitate |
Bis-GMA | bisphenol-A-glycidyldimethacrylate |
References
- Loomans, B.; Özcan, M. Intraoral Repair of Direct and Indirect Restorations: Procedures and Guidelines. Oper. Dent. 2016, 41, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.T.; Pedrotti, D.; Casagrande, L.; Lenzi, T.L. Risk of failure of repaired versus replaced defective direct restorations in permanent teeth: A systematic review and meta-analysis. Clin. Oral. Investig. 2022, 26, 4917–4927. [Google Scholar]
- Rekow, E.D.; Silva, N.R.; Coelho, P.G.; Zhang, Y.; Guess, P.; Thompson, V.P. Performance of dental ceramics: Challenges for improvements. J. Dent. Res. 2011, 90, 937–952. [Google Scholar] [CrossRef]
- Laborie, M.; Naveau, A.; Menard, A. CAD-CAM resin-ceramic material wear: A systematic review. J. Prosthet. Dent. 2024, 131, 812–818. [Google Scholar] [PubMed]
- Mainjot, A.K.; Dupont, N.M.; Oudkerk, J.C.; Dewael, T.Y.; Sadoun, M.J. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar]
- Hickel, R.; Brüshaver, K.; Ilie, N. Repair of restorations—Criteria for decision making and clinical recommendations. Dent. Mater. 2013, 29, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Gul, P.; Altınok-Uygun, L. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems. J. Adv. Prosthodont. 2020, 12, 131–139. [Google Scholar] [CrossRef]
- Erdemir, U.; Sancakli, H.S.; Sancakli, E.; Eren, M.M.; Ozel, S.; Yucel, T.; Yildiz, E. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material. J. Adv. Prosthodont. 2014, 6, 434–443. [Google Scholar] [CrossRef]
- Gajski, P.; Par, M.; Tarle, Z.; Marovic, D. Effect of Silane-Containing Adhesives on Repair Bond Strength between Fresh and Aged Composite Materials—A Pilot Study. Materials 2024, 17, 4646. [Google Scholar] [CrossRef]
- Arpa, C.; Ceballos, L.; Fuentes, M.V.; Perdigão, J. Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin. J. Prosthet. Dent. 2019, 121, 523–530. [Google Scholar]
- Ozturk Yesilirmak, S.; Oglakci, B.; Ozduman, Z.C.; Eliguzeloglu Dalkilic, E. Shear Bond Strength of Repaired CAD/CAM Resin-Based Composite Materials Submitted to Er:YAG Laser Treatments at Different Powers. Coatings 2023, 13, 1498. [Google Scholar] [CrossRef]
- Saratti, C.M.; Rocca, G.T.; Durual, S.; Lohbauer, U.; Ferracane, L.J.; Scherrer, S.S. Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dent. Mater. 2021, 37, 341–359. [Google Scholar] [CrossRef]
- Papia, E.; Larsson, C.; du Toit, M.; Vult von Steyern, P. Bonding between oxide ceramics and adhesive cement systems: A systematic review. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Fouquet, V.; Lachard, F.; Abdel-Gawad, S.; Dursun, E.; Attal, J.-P.; François, P. Shear Bond Strength of a Direct Resin Composite to CAD-CAM Composite Blocks: Relative Contribution of Micromechanical and Chemical Block Surface Treatment. Materials 2022, 15, 5018. [Google Scholar] [CrossRef]
- Şişmanoğlu, S.; Gürcan, A.T.; Yıldırım-Bilmez, Z.; Turunç-Oğuzman, R.; Gümüştaş, B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 22–32. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, L.S.; Pilecco, R.O.; Soares, P.M.; Rippe, M.P.; Pereira, G.K.R.; Valandro, L.F.; Kleverlaan, C.J.; Feilzer, A.J.; Tribst, J.P.M. Repair protocols for indirect monolithic restorations: A literature review. Peer J. 2024, 12, e16942. [Google Scholar] [CrossRef]
- Güngör, M.B.; Nemli, S.K.; Bal, B.T.; Ünver, S.; Doğan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar] [CrossRef]
- AlOtaibi, A.F.A.; Taher, N.M. Effect of surface treatment on the repair bond strength of OMNICHROMA and Charisma Diamond ONE resin composites bonded to variable substrates. Heliyon 2023, 9, e17786. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Krawczuk, A.; Ilie, N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin. Oral. Investig. 2015, 19, 299–308. [Google Scholar] [CrossRef]
- Elsaka, S.E. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent. Mater. J. 2015, 34, 161–167. [Google Scholar] [CrossRef]
- Kilinc, H.; Sanal, F.A.; Turgut, S. Shear bond strengths of aged and non-aged CAD/CAM materials after different surface treatments. J. Adv. Prosthodont. 2020, 12, 273–282. [Google Scholar] [CrossRef]
- Tatar, N.; Ural, C. Repair Success of Two Innovative Hybrid Materials as a Function of Different Surface Treatments. Int. J. Prosthodont. 2018, 31, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Akyil, M.S.; Yilmaz, A.; Karaalioğlu, O.F.; Duymuş, Z.Y. Shear bond strength of repair composite resin to an acid-etched and a laser-irradiated feldspathic ceramic surface. Photomed. Laser Surg. 2010, 28, 539–545. [Google Scholar]
- Kirmali, O.; Kapdan, A.; Harorli, O.T.; Barutcugil, C.; Ozarslan, M.M. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic. Acta Odontol. Scand. 2015, 73, 28–32. [Google Scholar] [PubMed]
- Sutuven, E.O.; Yildirim, N.C. Bond strength of self-adhesive resin cement to definitive resin crown materials manufactured by additive and subtractive methods. Dent. Mater. J. 2025, 44, 41–51. [Google Scholar]
- Sismanoglu, S.; Yildirim-Bilmez, Z.; Erten-Taysi, A.; Ercal, P. Influence of different surface treatments and universal adhesives on the repair of CAD-CAM composite resins: An in vitro study. J. Prosthet. Dent. 2020, 124, 238.e1–238.e9. [Google Scholar] [CrossRef] [PubMed]
- Arkoy, S.; Ulusoy, M. Effect of Different Surface Treatments on Repair Bond Strength of CAD/CAM Resin-Matrix Ceramics. Materials 2022, 15, 6314. [Google Scholar] [CrossRef]
- Bayraktar, Y.; Arslan, M.; Demirtag, Z. Repair bond strength and surface topography of resin-ceramic and ceramic restorative blocks treated by laser and conventional surface treatments. Microsc. Res. Tech. 2021, 84, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Karadağlioğlu, Ö.İ.; Alagöz, L.G.; Çalişkan, A.; Vaizoğlu, G.A. The Effect of Different Surface Roughening Systems on the Micro-Shear Bond Strength of Aged Resin Composites. Niger. J. Clin. Pract. 2022, 25, 37–43. [Google Scholar] [CrossRef]
- Wandscher, V.F.; Marchionatti, A.M.E.; Giuliani, D.L.; Scotti, R.; Baldissara, P.; Valandro, L.F. Grinding of composite cores using diamond burs with different grit sizes: The effects on the retentive strength of zirconia crowns. Braz. J. Oral Sci. 2020, 19, e201574. [Google Scholar]
- Ali, A.; Takagaki, T.; Naruse, Y.; Abdou, A.; Nikaido, T.; Ikeda, M.; Tagami, J. The effect of elapsed time following alumina blasting on adhesion of CAD/CAM resin block to dentin. Dent. Mater. J. 2019, 38, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Moravej-Salehi, E.; Moravej-Salehi, E.; Valian, A. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures. J. Investig. Clin. Dent. 2016, 7, 347–354. [Google Scholar] [PubMed]
- Elsaca, N.; Pardo-Díaz, C.; Atria, P.J.; Jorquera, G.; Lacalle Turbino, M.; Sobral Sampaio, C. Repair bond strength of aged composite resins using different surface treatment protocols. Int. J. Periodontics Restor. Dent. 2023, 43, e53–e60. [Google Scholar] [CrossRef] [PubMed]
- Blum, I.R.; Hafiana, K.; Curtis, A.; Barbour, M.E.; Attin, T.; Lynch, C.D.; Jagger, D.C. The effect of surface conditioning on the bond strength of resin composite to amalgam. J. Dent. 2012, 40, 15–21. [Google Scholar] [CrossRef]
- Dostalova, T.; Jelinkova, H. Lasers in dentistry: Overview and perspectives. Photomed. Laser Surg. 2013, 31, 147–149. [Google Scholar]
- Lizarelli Rde, F.; Moriyama, L.T.; Bagnato, V.S. Ablation of composite resins using Er: YAG laser—Comparison with enamel and dentin. Lasers Surg. Med. 2003, 33, 132–139. [Google Scholar] [CrossRef]
- Gökçe, B.; Ozpinar, B.; Dündar, M.; Cömlekoglu, E.; Sen, B.H.; Güngör, M.A. Bond strengths of all-ceramics: Acid vs laser etching. Oper. Dent. 2007, 32, 173–178. [Google Scholar]
- Kölüs, T.; Çelik, A.C.; Ülker, H.E. The effect of water aging on the repair shear bond strength of current resin composites. J. Interdiscip. Dent. 2023, 13, 68–72. [Google Scholar] [CrossRef]
- Dikici, B.; Türkeş Başaran, E.; Can, E. Does the Type of Resin Luting Material Affect the Bonding of CAD/CAM Materials to Dentin? Dent. J. 2025, 13, 41. [Google Scholar] [CrossRef]
- Abdalla, A.I.; El Zohairy, A.A.; Aboushelib, M.M.N.; Feilzer, A.J. Influence of thermal and mechanical load cycling on microtensile bond strength of self- etching adhesives. Am. J. Dent. 2007, 20, 250–254. [Google Scholar]
- Bahadır, H.S.; Bayraktar, Y. Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks. J. Adv. Prosthodont. 2020, 12, 140–149. [Google Scholar] [PubMed]
- Kiomarsi, N.; Jarrah, A.; Chiniforoush, N.; Hashemikamangar, S.S.; Kharazifard, M.J. Effect of surface treatment with laser on repair bond strength of composite resin to ceramic. Dent. Res. J. 2022, 19, 30. [Google Scholar]
- Deger, C.; Oğlakçı, B.; Özduman, Z.C.; Eliguzeloglu Dalkilic, E. Repair Bond Strength to Hybrid CAD/CAM Materials after Silane Heat Treatment with Laser. J. Adhes. Dent. 2023, 25, 63–70. [Google Scholar]
- Sadeghi, M.; Davari, A.; Abolghasami Mahani, A.; Hakimi, H. Influence of different power outputs of er:yag laser on shear bond strength of a resin composite to feldspathic porcelain. J. Dent. 2015, 16, 30–36. [Google Scholar]
- Moura, D.M.D.; Dal Piva, A.M.O.; Januário, A.B.D.N.; Verissímo, A.H.; Bottino, M.A.; Özcan, M.; Souza, R.O.A. Repair Bond Strength of a CAD/CAM Nanoceramic Resin and Direct Composite Resin: Effect of Aging and Surface Conditioning Methods. J. Adhes. Dent. 2020, 22, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Aydin, N.; Celik Oge, S.; Guney, O.; Okbaz, O.; Sertdemir, Y. A Comparison of the Shear Bond Strength between a Luting Composite Resin and Both Machinable and Printable Ceramic–Glass Polymer Materials. Materials 2024, 17, 4697. [Google Scholar] [CrossRef]
- Lise, D.P.; Van Ende, A.; De Munck, J.; Vieira, L.; Baratieri, L.N.; Van Meerbeek, B. Microtensile Bond Strength of Composite Cement to Novel CAD/CAM Materials as a Function of Surface Treatment and Aging. Oper. Dent. 2017, 42, 73–81. [Google Scholar] [CrossRef]
- PĂSTRAV, M.; Moldovan, M.; Chisnoiu, A.; SAROȘI, C.; MIUȚA, F.; PĂSTRAV, O.; Delean, A.; Chisnoiu, R. Influence Of Filler, Monomer Matrix And Silane Coating On Composite Resin Adhesion. Stud. Univ. Babes-Bolyai Chem. 2021, 66, 225–233. [Google Scholar]
- Spitznagel, F.A.; Vuck, A.; Gierthmühlen, P.C.; Blatz, M.B.; Horvath, S.D. Adhesive Bonding to Hybrid Materials: An Overview of Materials and Recommendations. Compend. Contin. Educ. Dent. 2016, 37, 630–637. [Google Scholar]
- Almutairi, M.A.; Salama, F.S.; Alzeghaibi, L.Y.; Albalawi, S.W.; Alhawsawi, B.Z. Surface treatments on repair bond strength of aged resin composites. J. Int. Soc. Prev. Community Dent. 2022, 12, 449–455. [Google Scholar]
- Didangelou, P.; Dionysopoulos, D.; Papadopoulos, C.; Strakas, D.; Mourouzis, P.; Tolidis, K. Evaluation of repair bond strength of a dental CAD/CAM resin composite after surface treatment with two Er, Cr: YSGG laser protocols following artificial aging. J. Mech. Behav. Biomed. Mater. 2023, 146, 106101. [Google Scholar] [CrossRef]
- Wiegand, A.; Stucki, L.; Hoffmann, R.; Attin, T.; Stawarczyk, B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin. Oral Investig. 2015, 19, 2007–2013. [Google Scholar] [CrossRef] [PubMed]
- Moura, D.M.D.; Veríssimo, A.H.; Vila-Nova, T.E.L.; Calderon, P.S.; Özcan, M.; Souza, R.O.A. Which surface treatment promotes higher bond strength for the repair of resin nanoceramics and polymer-infiltrated ceramics? A systematic review and meta-analysis. J. Prosthet. Dent. 2022, 128, 139–149. [Google Scholar] [PubMed]
- Kassotakis, E.M.; Stavridakis, M.; Bortolotto, T.; Ardu, S.; Krejci, I. Evaluation of the effect of different surface treatments on luting CAD/CAM composite resin overlay workpieces. J. Adhes. Dent. 2015, 17, 521–528. [Google Scholar] [PubMed]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent. Mater. 2017, 33, e124–e135. [Google Scholar] [CrossRef]
- El Gamal, A.; Medioni, E.; Rocca, J.P.; Fornaini, C.; Muhammad, O.H.; Brulat-Bouchard, N. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces. Lasers Med. Sci. 2017, 32, 779–785. [Google Scholar]
- Muhammed, H.A.; Mahmoud, E.M.; Fahmy, A.E.; Nasr, D.M. The effect of sandblasting versus acid etching on the surface roughness and biaxial flexural strength of CAD/CAM resin-matrix ceramics (In vitro study). BMC Oral Health 2023, 23, 169. [Google Scholar] [CrossRef]
- Mirzaei, M.; Yasini, E.; Tavakoli, A.; Chiniforush, N. Effect of different powers of Er, Cr: YSGG laser treatment on surface morphology of microhybride composite resin: Scanning electron microscope (SEM) evaluation. J. Lasers Med. Sci. 2015, 6, 62. [Google Scholar]
- Ataol, A.S.; Ergun, G. Effects of surface treatments on repair bond strength of a new CAD/CAM ZLS glass ceramic and two different types of CAD/CAM ceramics. J. Oral Sci. 2018, 60, 201–211. [Google Scholar] [CrossRef]
- Shiu, P.; De Souza-Zaroni, W.C.; Eduardo, C.d.P.; Youssef, M.N. Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed. Laser Surg. 2007, 25, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, Y.; Hibino, Y.; Eda, Y.; Nakajima, H. Effect of surface treatment of CAD/CAM resin composites on the shear bond strength of self-adhesive resin cement. Dent. Mater. J. 2021, 40, 364–378. [Google Scholar] [CrossRef] [PubMed]
Materials | Lot Number | Type | Manufacturer | Composition |
---|---|---|---|---|
Cerasmart270 | 1906101 | Hybrid ceramic | GC Corp, Tokyo, Japan | UDMA, DMA, Bis-MEPP, 71 wt% Nanoparticle filled resin, barium glass, and silica filler |
Grandio Blocs | 2011653 | Nano-hybrid Composite | VOCO GmbH Cuxhaven, Germany | 14% UDMA, DMA Dimethacrylates, glass ceramics, silica Filler content: 86 wt% |
G2-Bond Universal | 2406051 | Universal adhesive | GC Corporation, Dentsply Sirona Tokyo, Japan | Primer: 10-MDTP, 10-MDP, 4-MET, water, initiators, acetone, fillers Adhesive: dimethacrylate monomer, Bis-GMA, photoinitiator, filler. |
Filtek Z250 | 10820397 | Micro-hybrid composite | 3M ESPE | zirconia/silica, Non-agglomerated/non-aggregated 20-nanometer surface-modified silica particles 82% |
G-Multi PRIMER | 2301051 | Ceramic primer | GC Corporation, Dentsply Sirona Tokyo, Japan | Silane, phosphoric acid ester, Ethyl alcohol MDTP, MDP, DMA |
Surface Pretreatment Method | CAD/CAM Material | |
---|---|---|
CERASMART270 | GRANDIO BLOCS | |
Control | 18.84 ± 3.30 1,A | 16.83 ± 1.57 1,A |
Er:YAG laser | 21.34 ± 1.73 1,A,C | 17.08 ± 1.06 2,A |
Sandblasting | 23.63 ± 2.11 1,B,C | 21.42 ± 3.02 1,B |
Bur Grinding | 27.49 ± 3.30 1,D | 28.69 ± 2.93 1,C |
Type III Sum of Squares | df | Mean Square | F | p | |
---|---|---|---|---|---|
Intercept | 30,735.20 | 1 | 30,735.20 | 4867.40 | 0.0001 |
Material | 53.16 | 1 | 53.16 | 8.42 | 0.005 |
Surface Pretreatment | 999.63 | 3 | 333.21 | 52.77 | 0.0001 |
Material Surface Pretreatment | 60.88 | 3 | 20.29 | 3.21 | 0.03 |
Surface Roughness | CAD/CAM Material | |
---|---|---|
CERASMART270 | GRANDIO BLOCS | |
Control | 0.54 ± 0.10 1,A | 0.59 ± 0.13 1,A |
Er:YAG laser | 2.57 ± 0.44 1,B | 2.27 ± 0.24 1,B |
Sandblasting | 2.53 ± 0.30 1,B | 2.42 ± 0.36 1,B |
Bur Grinding | 2.58 ± 0.23 1,B | 2.41 ± 0.32 1,B |
Source | Type III Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Material | 0.37 | 1 | 0.37 | 2.49 | 0.058 |
Surface Pretreatment | 54.11 | 3 | 18.04 | 220.57 | 0.0001 |
Material Surface Pretreatment | 0.31 | 3 | 0.10 | 1.26 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikici, B.; Türkeş Başaran, E.; Şirinsükan, N.; Can, E. Repair Bond Strength and Surface Roughness Evaluation of CAD/CAM Materials After Various Surface Pretreatments. Coatings 2025, 15, 432. https://doi.org/10.3390/coatings15040432
Dikici B, Türkeş Başaran E, Şirinsükan N, Can E. Repair Bond Strength and Surface Roughness Evaluation of CAD/CAM Materials After Various Surface Pretreatments. Coatings. 2025; 15(4):432. https://doi.org/10.3390/coatings15040432
Chicago/Turabian StyleDikici, Burcu, Elif Türkeş Başaran, Nazlı Şirinsükan, and Esra Can. 2025. "Repair Bond Strength and Surface Roughness Evaluation of CAD/CAM Materials After Various Surface Pretreatments" Coatings 15, no. 4: 432. https://doi.org/10.3390/coatings15040432
APA StyleDikici, B., Türkeş Başaran, E., Şirinsükan, N., & Can, E. (2025). Repair Bond Strength and Surface Roughness Evaluation of CAD/CAM Materials After Various Surface Pretreatments. Coatings, 15(4), 432. https://doi.org/10.3390/coatings15040432