Zero-Reference Depth Curve Estimation-Based Low-Light Image Enhancement Method for Coating Workshop Inspection
Abstract
:1. Introduction
2. Related Work
3. Low-Light Image Enhancement for Coating Workshop Inspection
3.1. Zero-DCE
3.2. Zero-PTDCE
- Pre-Denoising Module
- 2.
- Depthwise Separable Dilated Convolution
- 3.
- Perceptual Loss Function Lp
- 4.
- PT-LLIE: A Low-Light Image Dataset for Coating Workshops
3.3. Loss Function
- (1)
- Perceptual Loss Function Lp
- (2)
- Color Loss Lc
- (3)
- Spatial Consistency Loss Ls
- (4)
- Exposure Loss Le
- (5)
- Smoothness Loss Ltv
- (6)
- Total Loss Function LTotal
3.4. Application Framework
4. Experiment Design and Analysis
4.1. Training Setup
4.2. Benchmark Evaluation
4.2.1. Visual and Perceptual Comparison
4.2.2. Quantitative Comparison
4.2.3. Time Performance Evaluation
4.2.4. Subjective Evaluation
- (1)
- Whether the result contains artifacts of over/underexposure or regions that are over/underenhanced;
- (2)
- Whether the result introduces any color distortion;
- (3)
- Whether the textures appear unnatural or noticeable noise is present.
4.3. Ablation Study
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drozda, M.; Miszczyk, A. Selection of Organic Coating Systems for Corrosion Protection of Industrial Equipment. Coatings 2022, 12, 523. [Google Scholar] [CrossRef]
- Heywood, M. Complete Project Coating Inspection Includes Inspecting Shop Applied Coatings. In Proceedings of the AMPP CORROSION, AMPP, Denver, CO, USA, 19–23 March 2023. Paper No. AMPP-2023-19217. [Google Scholar]
- Wang, W.; Wang, H. Preventive Replacement for Systems with Condition Monitoring and Additional Manual Inspections. Eur. J. Oper. Res. 2015, 247, 459–471. [Google Scholar] [CrossRef]
- Lin, C.H. Implementation of China’s ‘Replacing Humans with Machines’ Strategy to Promote Industrial Transformation Research. Dev. China 2015, 15, 71–73. [Google Scholar]
- Yang, W.; Zimroz, R.; Papaelias, M. Advances in Machine Condition Monitoring and Fault Diagnosis. Electronics 2022, 11, 1563. [Google Scholar] [CrossRef]
- Li, S.; Li, J. Condition Monitoring and Diagnosis of Power Equipment: Review and Prospective. High Voltage 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Singh, P.; Bhandari, K.A. A Review on Computational Low-Light Image Enhancement Models: Challenges, Benchmarks, and Perspectives. Arch. Comput. Methods Eng. 2025, 1–33. [Google Scholar] [CrossRef]
- Anoop, P.; Deivanathan, R. Advancements in Low-Light Image Enhancement Techniques and Recent Applications. J. Vis. Commun. Image Represent. 2024, 103, 104223. [Google Scholar] [CrossRef]
- Ye, J.; Qiu, C.; Zhang, Z. A Survey on Learning-Based Low-Light Image and Video Enhancement. Displays 2024, 81, 102614. [Google Scholar] [CrossRef]
- Hummel, R. Image Enhancement by Histogram Transformation. Comput. Graph. Image Process. 1977, 6, 184–195. [Google Scholar] [CrossRef]
- Land, E.H. The Retinex Theory of Color Vision. Sci. Am. 1977, 237, 108–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, J.; Hu, H.M.; Li, B. Naturalness Preserved Enhancement Algorithm for Non-Uniform Illumination Images. IEEE Trans. Image Process. 2013, 22, 3538–3548. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zeng, D.; Huang, Y.; Zhang, X.P.; Ding, X. A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2782–2790. [Google Scholar]
- Ren, X.; Li, M.; Cheng, W.H.; Liu, J. Joint Enhancement and Denoising Method via Sequential Decomposition. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-Revealing Low-Light Image Enhancement via Robust Retinex Model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef] [PubMed]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A Deep Autoencoder Approach to Natural Low-Light Image Enhancement. Pattern Recognit. 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Chen, Y.S.; Wang, Y.C.; Kao, M.H.; Chang, Y.Y. Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6306–6314. [Google Scholar]
- Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X. Low-Light Image Enhancement via a Deep Hybrid Network. IEEE Trans. Image Process. 2019, 28, 4364–4375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Guo, X. Kindling the Darkness: A Practical Low-Light Image Enhancer. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1632–1640. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, S.; Fang, Y.; Wang, Y.; Liu, J. From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3063–3072. [Google Scholar]
- Yuan, L.; Sun, J. Automatic Exposure Correction of Consumer Photographs. In Proceedings of the 12th European Conference on Computer Vision (ECCV 2012), Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 771–785. [Google Scholar]
- Guo, C.; Li, C.; Guo, J.; Loy, C.C.; Hou, J.; Kwong, S.; Cong, R. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1780–1789. [Google Scholar]
- Li, C.; Guo, C.; Loy, C.C. Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4225–4238. [Google Scholar] [CrossRef] [PubMed]
Method | PSNR (dB) ↑ | SSIM ↑ | MAE ↓ | |||
---|---|---|---|---|---|---|
PT-LLIE | LOL | PT-LLIE | LOL | PT-LLIE | LOL | |
URetinex-Net | 16.42 | 15.77 | 0.51 | 0.46 | 121.82 | 133.25 |
SCI | 17.54 | 14.78 | 0.56 | 0.52 | 123.73 | 120.63 |
Zero-DCE | 16.55 | 14.96 | 0.58 | 0.56 | 104.35 | 110.32 |
Zero-DCE++ | 16.58 | 15.84 | 0.58 | 0.56 | 103.67 | 109.36 |
Zero-PTDCE | 19.61 | 15.23 | 0.63 | 0.58 | 107.75 | 108.56 |
Method | URetinex-Net | SCI | Zero-DCE | Zero-DCE++ | Zero-PTDCE |
---|---|---|---|---|---|
Runtime (s) | 2.1325 | 0.0516 | 0.0026 | 0.0013 | 0.0012 |
Platform | PyTorch (GPU) | PyTorch (GPU) | PyTorch (GPU) | PyTorch (GPU) | PyTorch (GPU) |
Method | URetinex-Net | SCI | Zero-DCE | Zero-DCE++ | Zero-PTDCE |
---|---|---|---|---|---|
PT-LLIE | 3.32 | 4.02 | 3.18 | 3.43 | 4.15 |
LOL | 3.25 | 3.85 | 3.23 | 3.55 | 3.95 |
SICE Part2 | 3.12 | 3.58 | 3.55 | 3.92 | 4.11 |
Improvement Combinations | PSNR (dB) ↑ | SSIM ↑ | MAE ↓ |
---|---|---|---|
Z0 | 16.55 | 0.58 | 104.35 |
Z1 | 16.58 | 0.58 | 103.67 |
Z2 | 16.52 | 0.60 | 105.85 |
Z3 | 18.22 | 0.60 | 105.35 |
Z4 | 19.61 | 0.63 | 103.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, S.; Zhou, W.; Ren, H.; Zhao, W.; Li, Z. Zero-Reference Depth Curve Estimation-Based Low-Light Image Enhancement Method for Coating Workshop Inspection. Coatings 2025, 15, 478. https://doi.org/10.3390/coatings15040478
Liu J, Liu S, Zhou W, Ren H, Zhao W, Li Z. Zero-Reference Depth Curve Estimation-Based Low-Light Image Enhancement Method for Coating Workshop Inspection. Coatings. 2025; 15(4):478. https://doi.org/10.3390/coatings15040478
Chicago/Turabian StyleLiu, Jiaqi, Shanhui Liu, Wuyang Zhou, Huiran Ren, Wanqiu Zhao, and Zheng Li. 2025. "Zero-Reference Depth Curve Estimation-Based Low-Light Image Enhancement Method for Coating Workshop Inspection" Coatings 15, no. 4: 478. https://doi.org/10.3390/coatings15040478
APA StyleLiu, J., Liu, S., Zhou, W., Ren, H., Zhao, W., & Li, Z. (2025). Zero-Reference Depth Curve Estimation-Based Low-Light Image Enhancement Method for Coating Workshop Inspection. Coatings, 15(4), 478. https://doi.org/10.3390/coatings15040478