Effect of the Fluoride Species and Content of the PEO Electrolyte on the Corrosion Properties of the Layers Obtained on AZ31 for Biomedical Purposes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Coating Characterisations
3.1.1. SEM Analysis
3.1.2. EDS Determination
3.1.3. XRD Analysis
3.2. Electrochemical Behaviour
- ZCPE is the impedance;
- Q0 is an admittance constant;
- j is the imaginary unit;
- ω is the angular frequency;
- n is the phase exponent.
Sample | Rs (Ohm·cm2) | Router (Ohm·cm2) | Q0oxide(CPE outer) (sn/(Ohm·cm2)) | nouter (CPEouter) (-) | Rinter(Ohm·cm2) | Q0d(CPEinter) (sn/(Ohm·cm2)) | Ninter (CPEcor) (-) | Q0d/inl(CPEdl/in) (sn/(Ohm·cm2)) | nin (CPEdl) (-) | Rct/in (Ohm·cm2) |
---|---|---|---|---|---|---|---|---|---|---|
2 h 0.1 M NaCl saturated Mg(OH)2 | ||||||||||
WF | 198.6 | 2839 | 4.34 × 10−7 | 0.76 | 1752 | 1.34 × 10−7 | 0.95 | 92.7 × 10−7 | 0.90 | 1951 |
NaF | 147.7 | 10,193 | 2.68 × 10−7 | 0.79 | 34,328 | 2.17 × 10−7 | 0.95 | 2.48 × 10−7 | 0.95 | 513,000 |
LiF | 184.1 | 6567 | 4.09 × 10−7 | 0.77 | 44,605 | 9.19 × 10−7 | 0.86 | 9.15 × 10−7 | 0.90 | 10,526 |
Na2SiF6 | 170.5 | 19,472 | 4.68 × 10−7 | 0.76 | 275,000 | 2.63 × 10−7 | 0.91 | 1.02 × 10−7 | 0.90 | 142,000 |
24 h 0.1 M NaCl saturated Mg(OH)2 | ||||||||||
WF | 206.6 | 2082 | 7.04 × 10−7 | 0.71 | 2082 | 1.98 × 10−7 | 0.92 | 73.9 × 10−7 | 0.9 | 2621 |
NaF | 153.8 | 6310 | 4.93 × 10−7 | 0.74 | 21,584 | 1.54 × 10−7 | 0.88 | 3.39 × 10−7 | 0.92 | 128,000 |
LiF | 181.6 | 3703 | 9.33 × 10−7 | 0.69 | 6164 | 3.69 × 10−7 | 0.90 | 0.014 × 10−7 | 0.97 | 6537 |
Na2SiF6 | 161.5 | 20,578 | 5.84 × 10−7 | 0.72 | 19,444 | 1.61 × 10−7 | 0.95 | 4.21 × 10−7 | 0.95 | 35,353 |
3.3. Eudiometry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PEO | Plasma Electrolytic Oxidation |
WF | Without Fluoride |
References
- Reina, N.; Laffosse, J.M. Biomécanique de l’Os, Application Au Traitement et à La Consolidation Des Fractures. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 9, 1–17. [Google Scholar] [CrossRef]
- Uppal, G.; Thakur, A.; Chauhan, A.; Bala, S. Magnesium Based Implants for Functional Bone Tissue Regeneration—A Review. J. Magnes. Alloy. 2021, 10, 356–386. [Google Scholar] [CrossRef]
- King, J.F. Materials Perspective Magnesium: Commodity or Exotic? Mater. Sci. Technol. 2007, 23, 1–14. [Google Scholar] [CrossRef]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L.G. Fundamentals and Advances in Magnesium Alloy Corrosion. Prog. Mater. Sci. 2017, 89, 92–193. [Google Scholar] [CrossRef]
- Taheri, M.; Kish, J.R.; Birbilis, N.; Danaie, M.; McNally, E.A.; McDermid, J.R. Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces. Electrochim. Acta 2014, 116, 396–403. [Google Scholar] [CrossRef]
- Asmussen, R.M.; Binns, W.J.; Partovi-Nia, R.; Jakupi, P.; Shoesmith, D.W. The Stability of Aluminum-Manganese Intermetallic Phases under the Microgalvanic Coupling Conditions Anticipated in Magnesium Alloys. Mater. Corros. 2016, 67, 39–50. [Google Scholar] [CrossRef]
- Ballerini, G.; Bardi, U.; Bignucolo, R.; Ceraolo, G. About Some Corrosion Mechanisms of AZ91D Magnesium Alloy. Corros. Sci. 2005, 47, 2173–2184. [Google Scholar] [CrossRef]
- Barati Darband, G.; Aliofkhazraei, M.; Hamghalam, P.; Valizade, N. Plasma Electrolytic Oxidation of Magnesium and Its Alloys: Mechanism, Properties and Applications. J. Magnes. Alloy 2017, 5, 74–132. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Acta Biomaterialia Biomedical Coatings on Magnesium Alloys—A Review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef]
- Roknian, M.; Fattah-alhosseini, A.; Gashti, S.O. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer’s Physiological Solution. J. Mater. Eng. Perform. 2018, 27, 1343–1351. [Google Scholar] [CrossRef]
- Hussein, R. Plasma Process Control for Improved PEO Coatings on Magnesium Alloys. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2015. [Google Scholar]
- Matykina, E.; Garcia, I.; Arrabal, R.; Mohedano, M.; Mingo, B.; Sancho, J.; Merino, M.C.; Pardo, A. Role of PEO Coatings in Long-Term Biodegradation of a Mg Alloy. Appl. Surf. Sci. 2016, 389, 810–823. [Google Scholar] [CrossRef]
- Monetta, T.; Parnian, P.; Acquesta, A. Recent Advances in the Control of the Degradation Rate of PEO Treated Magnesium and Its Alloys for Biomedical Applications. Metals 2020, 10, 907. [Google Scholar] [CrossRef]
- Cui, X.; Lin, X.; Liu, C.; Yang, R.; Li, M. Microstructure and Properties of MAO Coatings for AZ91D Magnesium Alloy in Varies Work Mode. Mater. Sci. Forum 2013, 747–748, 178–183. [Google Scholar] [CrossRef]
- Liang, J.; Guo, B.; Tian, J.; Liu, H.; Zhou, J.; Xu, T. Effect of Potassium Fluoride in Electrolytic Solution on the Structure and Properties of Microarc Oxidation Coatings on Magnesium Alloy. Appl. Surf. Sci. 2005, 252, 345–351. [Google Scholar] [CrossRef]
- Soliman, H.; Hamdy, A.S. Effect of Fluoride Ions Modifier and Ceramic Al2O3 Particles Additives on Plasma Electrolytic Oxidation of AZ31. Surf. Eng. 2017, 33, 767–772. [Google Scholar] [CrossRef]
- Rogov, A.B.; Shayapov, V.R. The Role of Cathodic Current in PEO of Aluminum: Influence of Cationic Electrolyte Composition on the Transient Current-Voltage Curves and the Discharges Optical Emission Spectra. Appl. Surf. Sci. 2017, 394, 323–332. [Google Scholar] [CrossRef]
- Prince, L.; Noirfalise, X.; Paint, Y.; Olivier, M. Corrosion Mechanisms of AZ31 Magnesium Alloy: Importance of Starting PH and Its Evolution. Mater. Corros. 2022, 3, 1615–1630. [Google Scholar] [CrossRef]
- Sharma, S.; Sangal, S.; Mondal, K. On the Optical Microscopic Method for the Determination of Ball-on-Flat Surface Linearly Reciprocating Sliding Wear Volume. Wear 2013, 300, 82–89. [Google Scholar] [CrossRef]
- Rendenbach, C.; Fischer, H.; Kopp, A.; Schmidt-Bleek, K.; Kreiker, H.; Stumpp, S.; Thiele, M.; Duda, G.; Hanken, H.; Beck-Broichsitter, B.; et al. Improved in Vivo Osseointegration and Degradation Behavior of PEO Surface-Modified WE43 Magnesium Plates and Screws after 6 and 12 Months. Mater. Sci. Eng. C 2021, 129, 112380. [Google Scholar] [CrossRef]
- Ralls, A.M.; Daroonparvar, M.; Menezes, P.L. Spark Plasma Sintering of Mg-Based Alloys: Microstructure, Mechanical Properties, Corrosion Behavior, and Tribological Performance. J. Magnes. Alloy 2024, 12, 405–442. [Google Scholar] [CrossRef]
- Zhang, W.; Xin, S.; Huang, Q.; Jiao, H. Study on the Thermal Control Performance of Mg-Li Alloy Micro-Arc Oxidation Coating in High-Temperature Environments. Surfaces 2024, 7, 969–978. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to Plasma Electrolytic Oxidation-an Overview of the Process and Applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Pezzato, L.; Brunelli, K.; Gross, S.; Magrini, M.; Dabalà, M. Effect of Process Parameters of Plasma Electrolytic Oxidation on Microstructure and Corrosion Properties of Magnesium Alloys. J. Appl. Electrochem. 2014, 44, 867–879. [Google Scholar] [CrossRef]
- Lujun, Z.; Hongzhan, L.; Qingmei, M.; Jiangbo, L.; Zhengxian, L. The Mechanism for Tuning the Corrosion Resistance and Pore Density of Plasma Electrolytic Oxidation (PEO) Coatings on Mg Alloy with Fluoride Addition. J. Magnes. Alloy 2023, 11, 2823–2832. [Google Scholar] [CrossRef]
- Purniawan, A.; Faqih, M.A.A.; Wuryantoro, A.; Wicaksono, S.T.; Susanti, D.; Rasyida, A.; Ardhyananta, H. The Influence of Voltage and Time Variation on Plasma Electrolytic Oxidation (PEO) on the Morphology and Degradation Rate of AZ61 Magnesium Alloy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5196304 (accessed on 24 March 2025).
- Taher, M.K.; Momoli, F.; Go, J.; Hagiwara, S.; Ramoju, S.; Hu, X.; Jensen, N.; Terrell, R.; Hemmerich, A.; Krewski, D. Systematic Review of Epidemiological and Toxicological Evidence on Health Effects of Fluoride in Drinking Water. Crit. Rev. Toxicol. 2024, 54, 2–34. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Yan, Z.; Wang, H.; Peng, J. Effect of Potassium Fluoride on Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Films Formed on AZ31 Magnesium Alloy. J. Alloys Compd. 2009, 480, 469–474. [Google Scholar] [CrossRef]
- Hou, R.; Victoria-Hernandez, J.; Jiang, P.; Willumeit-Römer, R.; Luthringer-Feyerabend, B.; Yi, S.; Letzig, D.; Feyerabend, F. In Vitro Evaluation of the ZX11 Magnesium Alloy as Potential Bone Plate: Degradability and Mechanical Integrity. Acta Biomater. 2019, 97, 608–622. [Google Scholar] [CrossRef]
- Thanaa, T.T.; Fattah-alhosseini, A.; Alkaseem, M.; Kaseem, M. Improving the Surface Properties of Mg Based-Plasma Electrolytic Oxidation (PEO) Coatings under the Fluoride Electrolytes: A Review. Inorg. Chem. Commun. 2024, 170, 113163. [Google Scholar] [CrossRef]
- Castellanos, A.; Altube, A.; Vega, J.M.; García-Lecina, E.; Díez, J.A.; Grande, H.J. Effect of Different Post-Treatments on the Corrosion Resistance and Tribological Properties of AZ91D Magnesium Alloy Coated PEO. Surf. Coatings Technol. 2015, 278, 99–107. [Google Scholar] [CrossRef]
- Bordbar Khiabani, A.; Rahimi, S.; Yarmand, B.; Mozafari, M. Electrophoretic Deposition of Graphene Oxide on Plasma Electrolytic Oxidized-Magnesium Implants for Bone Tissue Engineering Applications. Mater. Today Proc. 2018, 5, 15603–15612. [Google Scholar] [CrossRef]
- Fu, L.; Yang, Y.; Zhang, L.; Wu, Y.; Liang, J.; Cao, B. Preparation and Characterization of Fluoride-Incorporated Plasma Electrolytic Oxidation Coatings on the AZ31 Magnesium Alloy. Coatings 2019, 9, 826. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information Lithium Fluoride. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Lithium-fluoride (accessed on 12 April 2025).
- Information National Center for Biotechnology Sodium Fluoride. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-Fluoride (accessed on 11 April 2025).
- Yang, H.; Dong, Y.; Li, X.; Gao, Y.; He, W.; Liu, Y.; Mu, X.; Zhao, Y. Anti-Corrosion Superhydrophobic Micro-GF/Micro-TiB2/Nano-SiO2 Based Coating with Braid Strengthening Structure Fabricated by a Single-Step Spray Deposition. J. Alloys Compd. 2024, 1008, 176725. [Google Scholar] [CrossRef]
- Moreno, L.; Mohedano, M.; Arrabal, R.; Matykina, E. Screening of Fluoride-Free PEO Coatings on Cast Mg3Zn0.4Ca Alloy for Orthopaedic Implants. Surf. Coatings Technol. 2024, 476, 130184. [Google Scholar] [CrossRef]
- Peng, H.; Wang, W.; Jiang, H.; Zan, R.; Sun, Y.; Yu, S.; Ni, J.; Wang, W.; Wang, T.; Wang, J.; et al. Effect of Galvanic Corrosion on the Degradability of Biomedical Magnesium. Front. Mater. 2021, 8, 767179. [Google Scholar] [CrossRef]
Bath | KOH (M) | Na2SiO3 (M) | NaF (M) | LiF (M) | Na2SiF6 (M) | pH | Conductivity (mS·cm−1) |
---|---|---|---|---|---|---|---|
Reference bath | |||||||
Without fluoride (WF) | 0.15 | 0.086 | - | - | - | 13.77 | 43.33 |
Study of fluorides | |||||||
LiF | 0.15 | 0.086 | - | 0.046 | - | 13.79 | 45.40 |
NaF | 0.15 | 0.086 | 0.046 | - | - | 13.78 | 43.78 |
Na2SiF6 | 0.15 | 0.086 | - | - | 0.0077 | 13.78 | 43.40 |
Average Pore Size | Pore Density | |||||||
---|---|---|---|---|---|---|---|---|
WF (µm) | NaF (µm) | LiF (µm) | Na2SiF6 (µm) | WF (%) | NaF (%) | LiF (%) | Na2SiF6 (%) | |
4 min PEO deposit | 1.97 ± 0.40 | 2.35 ± 0.38 | 3.05 ± 0.76 | 1.92 ± 1.27 | 87.8 | 75.0 | 93.9 | 88.0 |
30 min PEO deposit | 2.92 ± 0.92 | 2.50 ± 1.48 | 4.53 ± 2.95 | 2.80 ± 0.93 | 39.4 | 34.6 | 3.1 | 42.8 |
WF (µm) | NaF (µm) | LiF (µm) | Na2SiF6 (µm) | |
---|---|---|---|---|
4 min PEO deposit | 8.5 ± 0.8 | 7.1 ± 1.8 | 7.2 ± 0.8 | 5.0 ± 1.9 |
30 min PEO deposit | 11.8 ± 2.3 | 13.4 ± 2.7 | 25.5 ± 5.4 | 15.9 ± 2.8 |
Atomic % Error +/− 0.6 | F | Mg | Si | O |
---|---|---|---|---|
After 4 min deposit | ||||
NaF | 2.8 | 25.4 | 8.4 | 48.8 |
LiF | 1.6 | 23.8 | 9.7 | 44.3 |
Na2SiF6 | 2.5 | 23.7 | 9.7 | 47.2 |
After 30 min deposit | ||||
NaF | 6.1 | 36.5 | 4.8 | 43.8 |
LiF | 5.0 | 34.6 | 6.0 | 42.7 |
Na2SiF6 | 5.6 | 36.5 | 3.8 | 40.4 |
Sample | Area | Mg (%) | O (%) | Si (%) | F (%) | C (%) | Al (%) | K (%) |
---|---|---|---|---|---|---|---|---|
NaF | 1 (Barrier) | 47.6 ± 0.5 | 31.0 ± 0.7 | 6.8 ± 0.3 | 5.5 ± 0.7 | 6.8 ± 0.4 | 1.8 ± 0.3 | 0.5 ± 0.2 |
2 (Outer) | 32.7 ± 0.4 | 44.3 ± 0.7 | 13.8 ± 0.2 | 1.9 ± 0.7 | 6.2 ± 0.2 | 0.9 ± 0.1 | 0.2 ± 0.1 | |
LiF | 1 (Barrier) | 43.2 ± 0.5 | 35.1 ± 0.7 | 8.7 ± 0.3 | 5.4 ± 0.9 | 6.5 ± 0.4 | 1.4 ± 0.3 | 0.3 ± 0.1 |
2 (Outer) | 33.9 ± 0.4 | 43.9 ± 0.6 | 17.4 ± 0.3 | / | 3.6 ± 0.3 | 1.1 ± 0.2 | / | |
Na2SiF6 | 1 (Barrier) | 45.5 ± 0.5 | 33.1 ± 0.8 | 5.4 ± 0.3 | 5.4 ± 0.9 | 7.0 ± 0.4 | 1.5 ± 0.2 | 0.8 ± 0.2 |
2 (Outer) | 36.0 ± 0.4 | 42.9 ± 0.7 | 15.2 ± 0.3 | 1.3 ± 0.4 | 3.5 ± 0.2 | 1.0 ± 0.1 | / |
Sample | Rs (Ohm·cm2) | Router (Ohm·cm2) | Q0oxide(CPE outer) (sn/(Ohm·cm2)) | nouter (CPEoutide) (-) | Rinter (Ohm·cm2) | Q0inter (CPEinter) (sn/(Ohm·cm2)) | nd/in (CPEcor) (-) | Q0dl/in(CPEdl) (sn/(Ohm·cm2)) | ndl/in (CPEdl) (-) | Rct/in (Ohm·cm2) |
---|---|---|---|---|---|---|---|---|---|---|
2 h PBS | ||||||||||
NaF | 115 | 10,000 | 4.03 × 10−7 | 0.77 | 146,000 | 7.13 × 10−7 | 0.84 | 2.29 × 10−7 | 0.90 | 50,016 |
LiF | 125 | 6275 | 3.58 × 10−7 | 0.79 | 8099 | 1.31 × 10−7 | 0.99 | 5.28 × 10−7 | 0.90 | 58,930 |
Na2SiF6 | 123.3 | 7242 | 3.55 × 10−7 | 0.79 | 11,372 | 0.73 × 10−7 | 0.99 | 3.22 × 10−7 | 0.90 | 156,000 |
24 h PBS | ||||||||||
NaF | 130.1 | 141.6 | 6.11 × 10−7 | 0.84 | 2489 | 11.0 × 10−7 | 0.85 | 7.49 × 10−7 | 0.89 | 45,672 |
LiF | 131.4 | 374.3 | 32.5 × 10−7 | 0.87 | 23,763 | 21.4 × 10−7 | 0.88 | 164 × 10−7 | 0.90 | 7368 |
Na2SiF6 | 119.7 | 237.3 | 49.1 × 10−7 | 0.89 | 9455 | 33.3 × 10−7 | 0.90 | 393 × 10−7 | 0.47 | 11,500 |
Sample | Rs (Ohm·cm2) | Router (Ohm·cm2) | Q0outer(CPE outer) (sn/(Ohm·cm2)) | nouter (CPEouter) (-) | Rinter(Ohm·cm2) | Q0inter(CPEinter) (sn/(Ohm·cm2)) | ninter (CPEcor) (-) | Q0d/inl(CPEdl/in) (sn/(Ohm·cm2)) | nin (CPEdl) (-) | Rct/in (Ohm·cm2) |
---|---|---|---|---|---|---|---|---|---|---|
NaCl 0.1 M saturated in Mg(OH)2 | ||||||||||
WF | 192.7 | 17,692 | 3.15 × 10−7 | 0.76 | 47,574 | 9.61 × 10−7 | 0.75 | 23.8 × 10−7 | 0.87 | 117,000 |
NaF | 139.8 | 10,050 | 3.87 × 10−7 | 0.79 | 29,683 | 1.45 × 10−7 | 0.98 | 3.72 × 10−7 | 0.95 | 3,090,000 |
LiF | 214.4 | 7535 | 2.19 × 10−7 | 0.93 | 45,569 | 2.17 × 10−7 | 0.93 | 2.39 × 10−7 | 0.98 | 407,000 |
Na2SiF6 | 158.5 | 3972 | 5.59 × 10−7 | 0.71 | 4938 | 16.3 × 10−7 | 0.96 | 26.8 × 10−7 | 0.90 | 448,000 |
PBS | ||||||||||
WF | 116.9 | 210.1 | 15.9 × 10−7 | 0.84 | 79,275 | 18.4 × 10−7 | 0.84 | 376 × 10−7 | 0.64 | 37,610 |
NaF | 121.2 | 499.6 | 7.93 × 10−7 | 0.76 | 5500 | 5.98 × 10−7 | 0.84 | 4.09 × 10−7 | 0.92 | 589,000 |
LiF | 151.5 | 663.7 | 5.31 × 10−7 | 0.76 | 4940 | 6.12 × 10−7 | 0.84 | 6.59 × 10−7 | 0.90 | 727,000 |
Na2SiF6 | 127.2 | 1047 | 38.8 × 10−7 | 0.76 | 3642 | 12.7 × 10−7 | 0.95 | 13.8 × 10−7 | 0.98 | 186,000 |
P.E.% | NaF (%) | LiF (%) | Na2SiF6 (%) | WF (%) | |
---|---|---|---|---|---|
NaCl 0.1 M saturated in Mg(OH)2 | |||||
4 min deposit | 2 h | 99.26 | 91.96 | 98.59 | 24.51 |
4 min deposit | 24 h | 97.15 | 72.26 | 93.69 | 27.15 |
30 min deposit | 99.89 | 99.62 | 99.39 | 99.00 | |
PBS | |||||
4 min deposit | 2 h | 99.75 | 99.42 | 99.77 | / |
4 min deposit | 24 h | 77.99 | 62.62 | 17.28 | / |
30 min deposit | 97.74 | 98.05 | 92.72 | 88.87 |
Sample | Corrosion Rate After a Period of 150 h (mm/year) | |
---|---|---|
0.1 M NaCl saturated in Mg(OH)2 | PBS | |
Bare AZ31 | 5.86 | 1.17 |
WF | 1.41 | 0.94 |
NaF | 0.23 | 0.47 |
Na2SiF6 | 0.49 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tournay-Dufrenne, I.; Pasté, C.; Mégret, A.; Dangreau, L.; Olivier, M.-G. Effect of the Fluoride Species and Content of the PEO Electrolyte on the Corrosion Properties of the Layers Obtained on AZ31 for Biomedical Purposes. Coatings 2025, 15, 498. https://doi.org/10.3390/coatings15050498
Tournay-Dufrenne I, Pasté C, Mégret A, Dangreau L, Olivier M-G. Effect of the Fluoride Species and Content of the PEO Electrolyte on the Corrosion Properties of the Layers Obtained on AZ31 for Biomedical Purposes. Coatings. 2025; 15(5):498. https://doi.org/10.3390/coatings15050498
Chicago/Turabian StyleTournay-Dufrenne, Isis, Célia Pasté, Alexandre Mégret, Lisa Dangreau, and Marie-Georges Olivier. 2025. "Effect of the Fluoride Species and Content of the PEO Electrolyte on the Corrosion Properties of the Layers Obtained on AZ31 for Biomedical Purposes" Coatings 15, no. 5: 498. https://doi.org/10.3390/coatings15050498
APA StyleTournay-Dufrenne, I., Pasté, C., Mégret, A., Dangreau, L., & Olivier, M.-G. (2025). Effect of the Fluoride Species and Content of the PEO Electrolyte on the Corrosion Properties of the Layers Obtained on AZ31 for Biomedical Purposes. Coatings, 15(5), 498. https://doi.org/10.3390/coatings15050498