Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Simulated Tropical Marine Atmospheric Corrosion Test
- Salt spray test: conducted at 45 °C using a 0.1 wt.% NaCl (Aladdin, Shanghai, China) solution (pH 6.0) for 18 h.
- Damp heat test: performed at 45 °C and 95% relative humidity for 3 h.
- Drying test: added after the salt spray and damp heat phases to better replicate natural wet–dry alternation of the organic Zn14Al1.4 composite coating; conducted at 45 °C and <30% relative humidity for 1 h 30 min.
2.3. Fundamental Performance Testing of the Coating
- (1)
- Thickness: The thickness of samples was measured using a QNIX4500 (QNix, Cologne, Germany) coating thickness gauge, and the initial thickness values were recorded. Thereafter, samples were re-measured at the end of each test cycle to assess coating thickness changes over successive cycles. During thickness testing, measurements were taken at the one-quarter, one-half, and three-quarter positions of each specimen. The three measurements were averaged to obtain the mean thickness for each sample.
- (2)
- Color Difference: A spectrophotometer (3nh, Guangzhou, China) was used to measure the initial tristimulus values (L, a, b) of all specimens, and the results were recorded. Subsequently, tristimulus values (L*, a*, b*) were re-measured after each test cycle, and the color difference (ΔE) over cycles was calculated using Formula (1) [37]. Tristimulus measurements were taken at the one-quarter, one-half, and three-quarter positions of each specimen. The three readings were averaged to yield the mean tristimulus values for each sample.
- (3)
- Adhesion: Adhesion strength before testing (F0, MPa) and after each corrosion cycle (Fc, MPa) was measured with a Positest AT-A 20 automated pull-off adhesion tester (DeFelsko, New York, NY, USA), and macroscopic surface morphology was documented with a Nikon D7000 digital camera (Nikon, Tokyo, Japan). The percentage loss of adhesion (ΔF, %) was calculated using Formula (2) to evaluate adhesion changes over corrosion cycles.
2.4. Corrosion Morphology
2.5. Electrochemical Performance
2.6. Corrosion Products Composition
3. Results and Discussion
3.1. Macroscopic Corrosion Morphology
3.2. Fundamental Properties
3.3. Microscopic Corrosion Morphology
3.4. Corrosion Products
3.5. Electrochemical Properties
4. Corrosion Mechanism of the Organic Zn14Al1.4 Composite Coating
5. Conclusions
- (1)
- In the simulated marine environment, the organic Zn14Al1.4 composite coating’s early corrosion products are dominated by Zn(OH)2: in the mid-stage, Zn5(OH)8Cl2·H2O, Zn5(OH)6(CO3)2, and other Zn-hydroxide derivatives form alongside Al2O3/Al(OH)3 passive phases and Zn6Al2(OH)16CO3; and in the late stage, Fe-based products such as FeO, Fe2O3, Fe3O4, and FeOOH predominate, resulting in a complex, multilayered interface.
- (2)
- The coating is dense and intact initially, but by cycle 6 exhibits a porous, honeycomb-like structure with Cl and O enrichment in cracks and pores, increasing the porosity of the product layer.
- (3)
- The corrosion mechanism evolution of the organic Zn14Al1.4 composite coating in the simulated marine environment occurs in four stages: incubation accumulation, accelerated expansion, substrate corrosion nucleation, and unstable corrosion outbreak.
- (4)
- The failure of the organic Zn14Al1.4 composite coating is driven by a combination of anodic metal dissolution, volumetric effects of corrosion products, electrochemical micro-cell action, and interfacial physicochemical instability, providing a comprehensive kinetic framework for coating life assessment and failure prediction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Q.; Yang, S.; Zhang, W.; Da, G.; Xu, X.; Wang, X. Corrosion failure analysis of engineering structural steels in tropical marine atmospheres: A comparative study of ordinary and new weathering steels. Eng. Fail. Anal. 2024, 156, 107830. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Liu, Z.; Li, Z.; Du, C.; Dong, C. Materials science: Share corrosion data. Nature 2015, 527, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Song, J.L.; Hu, W.; Zhu, T.Y.; Gao, J.; Xiao, K. Corrosion Behaviour of Polyurethane Coating Containing Flurocarbon on Carbon Steel in Tropical Marine Atmospheric Environment. Int. J. Electrochem. Sci. 2022, 17, 221160. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, T.; Che, Z.; Liu, C.; Yan, Y.; Huang, F.; Cheng, X.; Li, X. Effect of Ca-Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment. Corros. Sci. 2024, 234, 112134. [Google Scholar] [CrossRef]
- Dong, B.; Liu, W.; Zhang, T.; Chen, L.; Fan, Y.; Zhao, Y.; Li, H.; Yang, W.; Sun, Y. Clarifying the effect of a small amount of Cr content on the corrosion of Ni-Mo steel in tropical marine atmospheric environment. Corros. Sci. 2023, 210, 110813. [Google Scholar] [CrossRef]
- Dong, B.; Liu, W.; Chen, L.; Zhang, T.; Fan, Y.; Zhao, Y.; Li, H.; Yang, W.; Sun, Y. Unraveling the effect of chloride ion on the corrosion product film of Cr-Ni- containing steel in tropical marine atmospheric environment. Corros. Sci. 2022, 209, 110741. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, B.; Zheng, M.; Zhao, X.; Xu, J. Corrosion Behaviors of S355 Steel under Simulated Tropical Marine Atmosphere Conditions. J. Mater. Eng. Perform. 2022, 31, 10054–10062. [Google Scholar] [CrossRef]
- Luo, L.; Wang, B.; Zhou, J.; Liu, J.; Wang, X. Effect of Cyclic Stress on Corrosion Behavior of 7A09 Aluminum Alloy in Tropical Coastal Atmosphere. Int. J. Electrochem. Sci. 2022, 17, 221215. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.; Chen, L.; Li, H.; Zhang, B.; Wang, F.; Hou, B. Establishing chloride concentration range for protective rust formation on weathering steel in simulated tropical marine atmospheres. Corros. Eng. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Y. An organic phosphonic acid doped polyaniline/zirconia/epoxy composite coating for metal protection in the marine environment. Prog. Org. Coat. 2023, 182, 107671. [Google Scholar] [CrossRef]
- Huang, H.; Hou, L.; Du, H.; Wei, H.; Liu, X.; Wang, Q.; Wei, Y. Efficient dual defense: PDA-Cu coating for simultaneous corrosion resistance and antibacterial protection of Mg alloys. Corros. Sci. 2024, 233, 112103. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, Y.; Su, L.; Deng, P.; Zhang, Y.; Liu, J.; Fang, X. Structure and Properties of ZnAl-ER Composite Coating Prepared by Spraying. J. Chin. Soc. Rare Earths 2024, 42, 528–536. [Google Scholar]
- Zhang, J.; Zhu, Q.; Wang, Z.; Wang, X.; Yan, J. Flake-like ZnAl alloy powder modified waterborne epoxy coatings with enhanced corrosion resistance. Prog. Org. Coat. 2023, 175, 107367. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Jiang, N.; Wang, Y.; Yang, L.; Fang, X.; Liu, J. Preparation and Properties of ZnAl-EP Coating for Bonded NdFeB with High Corrosion Resistance. J. Chin. Soc. Rare Earths 2023, 41, 748–756. [Google Scholar]
- Zubielewicz, M.; Langer, E.; Królikowska, A.; Komorowski, L.; Wanner, M.; Krawczyk, K.; Aktas, L.; Hilt, M. Concepts of steel protection by coatings with a reduced content of zinc pigments. Prog. Org. Coat. 2021, 161, 106471. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, L.; Zhu, Q.; wang, Z. The unique flake ZnAl alloy and OIT anti-corrosion and anti-mildew waterborne epoxy coatings. Inorg. Chem. Commun. 2023, 156, 111120. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, F.; Zhou, H.; Cheng, S.; Xu, K.; Wang, Z.; Xie, S.; Tian, J. Effect of Al Content on the Long-Term Corrosion Behavior of Arc-Sprayed ZnAl Alloy Coatings. Coatings 2023, 13, 1720. [Google Scholar] [CrossRef]
- Bobzin, K.; Öte, M.; Knoch, M.A. Designing the corrosion products of ZnAl15: A new approach to smart corrosion protection coatings? Corros. Sci. 2019, 155, 217–229. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Wang, Y.B.; Zou, R.; Yang, Y.C.; Toyohisa, F.; Wei, Y.Z. Effect of LDHs on Corrosion Behavior of 6061Al Alloy in NaCl Solution with Different Dissolved Oxygen Contents. Rare Met. Mater. Eng. 2022, 51, 1589–1596. [Google Scholar]
- Amanian, S.; Naderi, R.; Mahdavian, M. The Role of an In-Situ Grown Zn-Al Layered Double Hydroxide Conversion Coating in the Protective Properties of Epoxy Coating on Galvanized Steel. J. Electrochem. Soc. 2022, 169, 031511. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Zhou, B.; Wei, Y.; Gao, F.; Fujita, T. The effect of ZnAl-LDHs-CO3 on the corrosion behaviour of Zn-5Al alloys in 3.5wt.% NaCl solution. Corros. Sci. 2021, 179, 109165. [Google Scholar] [CrossRef]
- Holzner, T.; Luckeneder, G.; Strauß, B.; Valtiner, M. Environmentally Friendly Layered Double Hydroxide Conversion Layers: Formation Kinetics on Zn–Al–Mg-Coated Steel. ACS Appl. Mater. Interfaces 2022, 14, 6109–6119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jiang, N.; Sun, Y.; Yang, L.; Guan, C.; Zhang, E.; Fang, X.; Liu, J. Structure and Corrosion Resistance Characteristics of ZnAl/EP Coating on Bonded NdFeB Magnet. J. Mater. Eng. Perform. 2023, 32, 5475–5482. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, W.; Wang, L.; Feng, Y.; Ma, S.; Zhao, L.; Liu, G. Nano-structure and hydrophobicity co-determined barrier properties of corrosion protective ZnAl-LDH film in atmospheric environment. Corros. Sci. 2024, 232, 112052. [Google Scholar] [CrossRef]
- Liu, Q.L.; Wang, X.D.; Wang, X.K.; Yan, X.W.; Ma, X.J. Study of high emittance chemical conversion coatings for magnesium alloys. Surf. Eng. 2014, 30, 48–52. [Google Scholar] [CrossRef]
- De Rosa, L.; Mitton, D.B.; Monetta, T.; Bellucci, F.; Springer, J. Degradation of zinc oxide thin films in aqueous environment:. Part II—Coated Films. Mater. Corros. 2001, 52, 931–935. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, D.; Dong, Y.; Yang, Y.; Chu, Z.; Zhang, Z. The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings. Corros. Sci. 2013, 75, 220–227. [Google Scholar] [CrossRef]
- Zhicheng, L.; Dejun, K. Microstructure, corrosive–wear and immersion corrosion performances of laser cladded FeCoNiCr–Mo (Al, Ti) high–entropy alloy coatings. Corros. Sci. 2024, 227, 111766. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Fan, X.; Liao, B.; Deng, C.; Li, S.; Wang, C.; Xv, Y.; Li, K.; Lv, Y. Corrosion behavior of WC-NiMoCrFeCo coating in seawater environment: Positive corrosion inhibition of a novel dynamic reaction product. Chem. Eng. J. 2025, 507, 160568. [Google Scholar] [CrossRef]
- Yao, W.; Wu, L.; Jiang, B.; Pan, F. Slippery liquid-infused porous surface by ZnAl-layered double hydroxide on AZ31 Mg alloys. J. Taiwan Inst. Chem. Eng. 2023, 150, 105017. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Yan, N.; Han, Z.; Chang, Y.; Wang, J.; Li, Q. Clarifying the chemical reactions of the weakening of adhesion between epoxy resin and aluminum by molecular dynamic simulation and experiment. Front. Mater. 2022, 9, 985758. [Google Scholar] [CrossRef]
- Moosburger-Will, J.; Greisel, M.; Horn, S. Physical aging of partially crosslinked RTM6 epoxy resin. J. Appl. Polym. Sci. 2014, 131, 41121. [Google Scholar] [CrossRef]
- Gibhardt, D.; Buggisch, C.; Meyer, D.; Fiedler, B. Hygrothermal Aging History of Amine-Epoxy Resins: Effects on Thermo-Mechanical Properties. Front. Mater. 2022, 9, 826076. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, S.; An, P.; Luo, J. Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution. Appl. Surf. Sci. 2006, 253, 468–475. [Google Scholar] [CrossRef]
- Li, M.C.; Jiang, L.L.; Zhang, W.Q.; Qian, Y.H.; Luo, S.Z.; Shen, J.N. Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5% NaCl solutions. J. Solid State Electrochem. 2007, 11, 1319–1325. [Google Scholar] [CrossRef]
- Persson, D.; Thierry, D.; LeBozec, N. Corrosion product formation on Zn55Al coated steel upon exposure in a marine atmosphere. Corros. Sci. 2011, 53, 720–726. [Google Scholar] [CrossRef]
- Wang, Y.; Reng, X.; Wang, D.; Liu, H.; Wu, Y. Minimizing Color Difference in AAO-Based Coatings for Urban Camouflage. Nanomaterials 2025, 15, 890. [Google Scholar] [CrossRef]
- Hayden, S.C.; Chisholm, C.; Eichmann, S.L.; Grudt, R.; Frankel, G.S.; Hanna, B.; Headrick, T.; Jungjohann, K.L. Genesis of Nanogalvanic Corrosion Revealed in Pearlitic Steel. Nano Lett. 2022, 22, 7087–7093. [Google Scholar] [CrossRef]
- Laleh, M.; Jurak, T.; Gusieva, K.; Williams, J.; Renshaw, W.; Correnti, S.; Hodges, J.; Gazder, A.A. New insights into corrosion initiation and propagation in a hot-dip Al-Zn-Mg-Si alloy coating via multiscale analytical microscopy. Corros. Sci. 2025, 245, 112695. [Google Scholar] [CrossRef]
- Behera, P.K.; Misra, S.; Mondal, K. Corrosion of Strained Plain Rebar in Chloride-Contaminated Mortar and Novel Approach to Estimate the Corrosion Amount from Rust Characterization. J. Mater. Civ. Eng. 2021, 33, 04021283. [Google Scholar] [CrossRef]
- Luo, Z.; Zuo, J.; Jiang, H.; Geng, W.; Zhou, Y.; Lian, Z.; Wei, W. Inhibition Effect of Fluoride Ion on Corrosion of 304 Stainless Steel in Occluded Cell Corrosion Stage in the Presence of Chloride Ion. Metals 2021, 11, 350. [Google Scholar] [CrossRef]
- Sun, B.-W.; Yang, J.-Y.; Dai, J.-W.; Zhao, Y.-B.; Zhang, L.; Huang, Z.-J.; Bai, J.; Xue, F.; Chu, P.K.; Chu, C.-L. Effects of PHB and PLA coatings on the corrosion behavior of ultrathin Mg sheets in artificial blood plasma containing BSA. Rare Met. 2025, 44, 5656–5671. [Google Scholar] [CrossRef]
- Fang, G.; Ding, W.; Liu, Y.; Zhang, J.; Xing, F.; Dong, B. Identification of corrosion products and 3D distribution in reinforced concrete using X-ray micro computed tomography. Constr. Build. Mater. 2019, 207, 304–315. [Google Scholar] [CrossRef]
- Deyab, M.A.; Mohamed, N.H.; Moustafa, Y.M. Corrosion protection of petroleum pipelines in NaCl solution by microcrystalline waxes from waste materials: Electrochemical studies. Corros. Sci. 2017, 122, 74–79. [Google Scholar] [CrossRef]
- Beraldo, C.H.M.; Spinelli, A.; Scharnagl, N.; da Conceição, T.F. New relations between modification degree, swelling and impedance in anticorrosion chitosan-derivative coatings on magnesium alloy AZ31. Carbohydr. Polym. 2022, 292, 119617. [Google Scholar] [CrossRef] [PubMed]
- Abdikheibari, S.; Parvizi, R.; Moayed, M.H.; Zebarjad, S.M.; Sajjadi, S.A. Beeswax-Colophony Blend: A Novel Green Organic Coating for Protection of Steel Drinking Water Storage Tanks. Metals 2015, 5, 1645–1664. [Google Scholar] [CrossRef]
- Kaji, T.; Sekiai, T.; Muto, I.; Sugawara, Y.; Hara, N. Visualization of pH and pCl Distributions: Initiation and Propagation Criteria for Crevice Corrosion of Stainless Steel. J. Electrochem. Soc. 2012, 159, C289. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Huang, Q.; Zhao, J.; Gao, F.; Wei, Y. Effect of ZnAl-LDH on corrosion resistance of Zn–55Al alloy in NaCl solution. Mater. Corros. 2023, 74, 1439–1455. [Google Scholar] [CrossRef]
- Mouanga, M.; Berçot, P.; Rauch, J.Y. Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions. Part I: Corrosion layer characterization. Corros. Sci. 2010, 52, 3984–3992. [Google Scholar] [CrossRef]
- Salgueiro Azevedo, M.; Allély, C.; Ogle, K.; Volovitch, P. Corrosion mechanisms of Zn(Mg, Al) coated steel in accelerated tests and natural exposure: 1. The role of electrolyte composition in the nature of corrosion products and relative corrosion rate. Corros. Sci. 2015, 90, 472–481. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, K.; Dong, C.; Wu, J.; Li, X.; Huang, Y. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42. Eng. Fail. Anal. 2011, 18, 1981–1989. [Google Scholar] [CrossRef]
- Zubielewicz, M.; Królikowska, A. The influence of ageing of epoxy coatings on adhesion of polyurethane topcoats and protective properties of coating systems. Prog. Org. Coat. 2009, 66, 129–136. [Google Scholar] [CrossRef]
- Su, G.; Yu, C.; Zheng, H.; Gao, X.; Xie, H.; Huo, M.; Wu, H.; Xu, J.; Du, L.; Jiang, Z. The Wet–Dry Cycling Corrosion Behavior of Low-Carbon Medium Manganese Steel Exposed to a 3.5% NaCl Solution Environment. J. Mater. Eng. Perform. 2022, 31, 7856–7869. [Google Scholar] [CrossRef]
- Xiao, K.; Dong, C.-f.; Li, X.-g.; Wang, F.-m. Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel. J. Iron Steel Res. Int. 2008, 15, 42–48. [Google Scholar] [CrossRef]
Elements | C | Mn | Si | S | P | Fe |
---|---|---|---|---|---|---|
Content | 0.19% | 1.10% | 0.25% | <0.045% | <0.045% | Rest |
Cycles | Untested | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
Corrosion area ratio | 0 | 0 | 0.04% | 5.0% | 12.92% | 37.24% | 69.65% |
Cycle | Points | Elements (wt.%) | ||||
---|---|---|---|---|---|---|
Zn | Al | Fe | Cl | O | ||
1 | A | 55.3 | 9.1 | 0.8 | 0.8 | 34.1 |
B | 76.1 | 5.3 | 0.9 | 1.0 | 16.7 | |
C | 39.6 | 14.4 | 0.0 | 2.0 | 44.0 | |
2 | A | 51.1 | 15.2 | 1.5 | 1.3 | 30.9 |
B | 78.9 | 4.1 | 0 | 0.5 | 16.5 | |
C | 59.0 | 11.7 | 0.9 | 1.1 | 27.3 | |
3 | A | 58.6 | 4.2 | 0.6 | 7.2 | 29.5 |
B | 50.3 | 8.6 | 1.6 | 0.5 | 39.0 | |
C | 62.7 | 10.3 | 0.1 | 2.0 | 24.9 | |
4 | A | 42.4 | 9.6 | 9.7 | 0 | 38.2 |
B | 24.7 | 4.6 | 10.1 | 0.3 | 60.3 | |
C | 30.9 | 9.9 | 19.6 | 0.3 | 39.3 | |
5 | A | 20.7 | 3.9 | 37.7 | 3.7 | 34.1 |
B | 25.0 | 8.0 | 18.0 | 1.7 | 47.3 | |
C | 23.0 | 4.7 | 31.9 | 4.0 | 36.3 | |
6 | A | 0.6 | 0 | 71.0 | 0.3 | 28.1 |
B | 6.5 | 0 | 69.2 | 4.1 | 20.2 | |
C | 2.6 | 0.7 | 76.4 | 0 | 20.3 |
Cycle | Rs (Ω·cm2) | CPE1 | Rc (Ω·cm2) | CPE2 | Rct (Ω·cm2) | Zw (S·cm−2·s−0.5) | ||
---|---|---|---|---|---|---|---|---|
Yc (S·cm−2·s−n) | n1 | Ydl (S·cm−2·s−n) | n2 | |||||
0 | 0.01 | 2.17 × 10−10 | 0.92 | 8.31 × 107 | - | - | - | - |
1 | 7.14 | 9.08 × 10−9 | 0.85 | 2.05 × 106 | - | - | - | 1.60 × 10−4 |
2 | 10 | 7.68 × 10−9 | 0.89 | 1.95 × 106 | 5.35 × 10−8 | 0.81 | 1.07 × 107 | - |
3 | 0.01 | 1.59 × 10−6 | 0.58 | 4.23 × 104 | 1.81 × 10−7 | 0.71 | 1.07 × 104 | 2.04 × 10−4 |
4 | 0.01 | 4.73 × 10−4 | 0.52 | 6.50 × 104 | 5.88 × 10−6 | 0.40 | 4.08 × 103 | - |
5 | 0.01 | 3.89 × 10−8 | 0.75 | 1.82 × 103 | 5.92 × 10−6 | 0.22 | 2.25 × 103 | 6.34 × 10−3 |
6 | 0.01 | 1.58 × 10−8 | 0.84 | 2.69 × 103 | 2.54 × 10−6 | 0.28 | 2.54 × 103 | 5.69 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yu, H.; Liu, C.; Huang, Y.; Wu, H.; Yi, P.; Xiao, K.; Gao, J. Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions. Coatings 2025, 15, 981. https://doi.org/10.3390/coatings15090981
Zhang H, Yu H, Liu C, Huang Y, Wu H, Yi P, Xiao K, Gao J. Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions. Coatings. 2025; 15(9):981. https://doi.org/10.3390/coatings15090981
Chicago/Turabian StyleZhang, Hao, Hao Yu, Chang Liu, Yesheng Huang, Haoyu Wu, Pan Yi, Kui Xiao, and Jin Gao. 2025. "Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions" Coatings 15, no. 9: 981. https://doi.org/10.3390/coatings15090981
APA StyleZhang, H., Yu, H., Liu, C., Huang, Y., Wu, H., Yi, P., Xiao, K., & Gao, J. (2025). Mechanistic Investigation of the Corrosion Behavior of Organic Zn14Al1.4 Composite Coating Under Simulated Tropical Marine Atmospheric Conditions. Coatings, 15(9), 981. https://doi.org/10.3390/coatings15090981