Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Synthesis of Different Molecular Sieves
2.1.1. Nb2O5 Synthesis Supported on MCM-41 through the Sol-Gel Method (Nb-MCM-41-Solgel)
2.1.2. Nb2O5 Synthesis Supported on MCM-41 through the Incipient Humidity Impregnation Method (Nb/MC-41-ImpHum)
2.2. Characterization of Photocatalysts
2.3. Photocatalytic Activities
2.3.1. Adsorption Kinetics
2.3.2. Photodegradation Effect
3. Results and Discussion
3.1. Characterization of Solids
Sample | Mass (g) | BET Surface Area (m2/g) | Correlation Coefficient | Pore Volume (cm3/g) | Pore Size (nm) | Pore Type |
---|---|---|---|---|---|---|
20% Nb-MCM-41 sol-gel method | 0.3896 | 684.1391 ± 24.5850 | 0.9967814 | 0.618766 | 2.61 | Mesopore |
30% Nb-MCM-41 sol-gel method | 0.0659 | 496.8287 ± 10.1249 | 0.9993733 | 0.458849 | 2.42 | Mesopore |
20% Nb-MCM-41 incipient impregnation method | 0.0441 | 836.4673 ± 41.6990 | 0.9924810 | 0.610336 | 2.44 | Mesopore |
3.2. Adsorption Kinetics and Results of Photodegradation Effect
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Gaya, U.I. Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids; Springer Science + Business Media: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Kaneko, M.; Okura, I. Photocatalysis: Science and Technology; Kodansha–Springer: New York, NY, USA, 2002. [Google Scholar]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Coronado, J.M.; Fresno, F.; Hernández-Alonso, M.D.; Porteña, R. Design of Advanced Photocatalytic Materials for Energy and Environmental Applications; Springer-Verlag: London, UK, 2013. [Google Scholar]
- Zhou, B.; Raja, R.; Han, S.; Somorjai, G.A. Nanotechnology in Catalysis; Springer: New York, NY, USA, 2007; Volume 3. [Google Scholar]
- Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Nozik, A.J.; Williams, F.; Nenadovic, M.T.; Rajh, T.; Micic, O.I. Size quantization in small semiconductor particles. J. Phys. Chem. 1985, 89, 397–399. [Google Scholar]
- Stroyuk, O.L.; Kuchmiy, S.Y.; Kryukov, A.I.; Pokhodenko, V.D. Semiconductor Catalysis and Photocatalysis on the Nanoscale; Nova Science Publishers, Inc.: New York, NY, USA, 2010. [Google Scholar]
- Shchukin, D.G.; Sviridov, D.V. Photocatalytic processes in spatially confined micro- and nanoreactors. J. Photochem. Photobiol. C 2006, 7, 23–39. [Google Scholar] [CrossRef]
- Chen, H.; Chen, S.; Quan, X.; Zhang, Y. Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis. Environ. Sci. Technol. 2010, 44, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwak, S.Y. Photocatalytic inactivation of E. coli with mesoporous TiO2 coated film using the film adhesion method. Environ. Sci. Technol. 2009, 43, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J.C.-S. Mesoporous TiO2/SBA-15 and Cu/TiO2/SBA-15 composite photocatalysts for photoreduction of CO2 to methanol. Cat. Lett. 2009, 131, 381–387. [Google Scholar] [CrossRef]
- Li, X.; Lu, K.; Deng, K.; Tang, J.; Su, R.; Sun, J.; Chen, L. Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity. Mat. Sci. Eng. B 2009, 158, 40–47. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, J.; Chen, F.; Anpo, M. Ordered mesoporous CeO2 synthesized by nanocasting from cubic Ia3d mesoporous MCM-48 silica: Formation, characterization and photocatalytic activity. J. Phys. Chem. C 2008, 112, 17809–17813. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, L.; Wang, M.; Min, Y.; Zhang, Y. Self-assembled Co3O4 porous nanostructures and their purification and their photocatalytic activity. Colloids Surf. A 2009, 336, 64–68. [Google Scholar] [CrossRef]
- Ziolek, M.; Nowak, I. Synthesis and characterization of niobium-containing MCM-41. Zeolites 1997, 18, 356–360. [Google Scholar] [CrossRef]
- Ziolek, M.; Sobezak, I.; Nowak, I.; Decyk, P.; Lewandowaska, A.; Kujawa, J. Nb-containing mesoporous molecular sieves—Possible application in the catalytic processes. Micro. Mesop. Mater. 2000, 35–36, 195–207. [Google Scholar] [CrossRef]
- Ziolek, M.; Sobezak, I.; Lewandowska, A.; Nowak, I.; Decyk, P.; Renn, M.; Jankowska, B. Oxidative properties of niobium-containing mesoporous silica catalysts. Catal. Today 2001, 70, 169–181. [Google Scholar] [CrossRef]
- Chen, X.; Yu, T.; Fan, X.; Zhang, H.; Li, Z.; Ye, J.; Zou, Z. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl. Surf. Sci. 2007, 253, 8500–8506. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Yang, H.-C.; Wang, W.-L. Synthesis of mesoporous Nb2O5 photocatalysts with Pt, Au, Cu and NiO cocatalyst for water splitting. Catal. Today 2011, 174, 106–113. [Google Scholar] [CrossRef]
- Lopes, O.F.; Paris, E.C.; Ribeiro, C. Synthesis of nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Appl. Catal. B Environ. 2014, 144, 800–808. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Ramalho, T.C.; Goncalves, M.; Cereda, F.; Carvalho, K.T.; Nazzarro, M.S.; Sapag, K. Pure niobia as catalyst for the oxidation of organic contaminants: mechanism study via ESI-MS and theoretical calculations. Chem. Phys. Lett. 2007, 446, 133–137. [Google Scholar] [CrossRef]
- Esteves, A.; Oliveira, L.C.A.; Ramalho, T.C.; Goncalves, M.; Anastacio, A.S.; Carvalho, H.W.P. New materials base on modified synthetic Nb2O5 as photocatalyst for oxidation of organic contaminants. Catal. Commun. 2008, 10, 330–332. [Google Scholar] [CrossRef]
- Gallo, J.M.R.; Paulino, I.S.; Schuchardt, Ulf. Cyclooctene epoxidation using Nb-MCM-41 and Ti-MCM-41 synthesized at room temperature. Appl. Catal. A 2004, 266, 223–227. [Google Scholar] [CrossRef]
- Gallo, J.M.R.; Pastore, H.O.; Schuchardt, U. Silylation of [Nb]-MCM-41 as an efficient tool to improve epoxidation activity and selectivity. J. Catal. 2006, 243, 57–63. [Google Scholar] [CrossRef]
- Nowak, I.; Misiewicz, M.; Ziolek, M.; Kubacka, A.; Corte´s Corberán, V.; Sulikowski, B. Catalytic properties of niobium and gallium oxide systems supported on MCM-41 type materials. Appl. Catal. A 2007, 325, 328–335. [Google Scholar] [CrossRef]
- Anilkumar, M.; Hölderich, W.F. Highly active and selective Nb modified MCM-41 catalysts for Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam. J. Catal. 2008, 260, 17–29. [Google Scholar] [CrossRef]
- An, X.; Gao, C. Synthesis of mesoporous N-doped TiO2/ZnAl-layered double oxides nanocomposite for efficient photodegradation of methyl orange. Mater. Sci. Semicond. Process. 2015, 34, 162–169. [Google Scholar] [CrossRef]
- Solmaza, A.; TimurDogu, S.B. Synthesis and characterization of V, Mo and Nb incorporated micro–mesoporous MCM-41 materials. Mater. Chem. Phys. 2011, 125, 148–155. [Google Scholar] [CrossRef]
- Kamegawa, T.; Yamashita, H. Solar energy conversion using single-site photocatalysts. In New and Future Developments in Catalysis: Solar Photocatalysis; Suib, L., Ed.; Elsevier: Amsterdan, The Netherlands, 2013; pp. 103–119. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez, C.D.; Rodriguez-Paez, J.E. Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions. Coatings 2015, 5, 511-526. https://doi.org/10.3390/coatings5030511
Gomez CD, Rodriguez-Paez JE. Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions. Coatings. 2015; 5(3):511-526. https://doi.org/10.3390/coatings5030511
Chicago/Turabian StyleGomez, Caterine Daza, and J. E. Rodriguez-Paez. 2015. "Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions" Coatings 5, no. 3: 511-526. https://doi.org/10.3390/coatings5030511
APA StyleGomez, C. D., & Rodriguez-Paez, J. E. (2015). Photocatalytic Properties of Nb/MCM-41 Molecular Sieves: Effect of the Synthesis Conditions. Coatings, 5(3), 511-526. https://doi.org/10.3390/coatings5030511