Study on Surface Properties of Polyamide 66 Using Atmospheric Glow-Like Discharge Plasma Treatment
Abstract
:1. Introduction
2. Experimental Section
2.1. Nylon Materials
2.2. Surface Modification Reactor
2.3. Measurement Instruments
3. Results and Discussion
3.1. Physical Analysis of the Surface
3.2. Chemical Analysis of the Surface
3.3. Sterilization Effect
3.4. Aging Effect
4. Conclusions
- (1)
- Through AFM analyses, the PA66 fabric surface will be etched remarkably by the glow-like plasma. The surface roughness and the surface energy are augmented—all of which may be helpful to ameliorate the PA66 fabric’s hydrophilicity.
- (2)
- The XPS analyses show that after the treatment, the oxygen-containing groups’ content rises together with the decrease of the primary C–C and C–N bonds in all, and N-element content has been changed accordingly. This is due to the glow-like plasma cracking the primary carbon-containing bonds, which leads to the formation of hydroxyl, carboxyl and double bonds of carbon to oxygen under atmospheric air at the beginning of the treatment. The COOH and C–OH appears after the treatment. The over-handling will cause the carboxyl to convert into other substances or to shed.
- (3)
- After almost 30 s of the glow-like plasma treatment for sterilization, most of the E. coli inoculated on the PA66 fabrics is inactivated. For the treatment effect of sterilization, when the number of discharges is constant, the treatment effect doesn’t monotonically increase with the augmentation of the PRF. An optimal frequency could be found. When the treatment time isn’t the dominant factor, increasing the processing time to a certain degree is beneficial for a better processing effect. Meanwhile, the PRF can be lowered.
- (4)
- The treatment efficiency obtained by the glow-like plasma can maintain a certain time, i.e., the treatment effect has sufficient timeliness. In addition, the aging effect can be delayed by the sealed storing environment. Before further processing, it is suggested the processed fabrics should be stored in a sealed or oxygen-free environment.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yousefi, H.R.; Ghoranneviss, M.; Tehrani, A.R.; Khamseh, S. Investigation of glow discharge plasma for surface modification of polypropylene. Surf. Interface Anal. 2003, 35, 1015–1017. [Google Scholar] [CrossRef]
- Mundo, R.D.; D’Agostino, R.; Palumbo, F. Long-lasting antifog plasma modification of transparent plastics. ACS Appl. Mater. Interfaces 2014, 6, 17059–17066. [Google Scholar] [CrossRef] [PubMed]
- Abidi, N.; Hequet, E. Cotton fabric graft copolymerization using microwave plasma. I. Universal attenuated total reflectance–FTIR study. J. Appl. Polym. Sci. 2004, 93, 145–154. [Google Scholar] [CrossRef]
- Wang, C.X.; Qiu, Y.P. Two sided modification of wool fabrics by atmospheric pressure plasma jet: Influence of processing parameters on plasma penetration. Surf. Coat. Technol. 2007, 201, 6273–6277. [Google Scholar] [CrossRef]
- Nakahira, A.; Suzuki, Y.; Ueno, S.; Akamizu, Η.; Kijima, Κ.; Nishijima, S. Effect of plasma treatment on microstructure and surface of glass for plastic-based composite. Sci. Eng. Compos. Mater. 1999, 8, 129–136. [Google Scholar] [CrossRef]
- Shao, T.; Zhou, Y.; Zhang, C.; Yang, W.; Niu, Z.; Ren, C. Surface modification of polymethyl-methacrylate using atmospheric pressure argon plasma jets to improve surface flashover performance in vacuum. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1747–1754. [Google Scholar] [CrossRef]
- Meiners, S.; Salge, J.G.H.; Prinz, E.; Förster, F. Surface modification of polymer materials by transient gas discharges at atmospheric pressure. Surf. Coat. Technol. 1998, 98, 1121–1127. [Google Scholar] [CrossRef]
- Akishev, Y.; Grushin, M.; Napartovich, A.; Trushkin, N. Novel AC and DC non-thermal plasma sources for cold surface treatment of polymer films and fabrics at atmospheric pressure. Plasma Polym. 2002, 7, 261–289. [Google Scholar] [CrossRef]
- Akishev, Y.S.; Grushin, M.E.; Monich, A.E.; Napartovich, A.P.; Trushkin, N.I. One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics. High Energy Chem. 2003, 37, 286–291. [Google Scholar] [CrossRef]
- Lai, J.; Sunderland, B.; Xue, J.; Yan, S.; Zhao, W.; Folkard, M.; Michael, B.D.; Wang, Y. Study on hydrophilicity of polymer surfaces improved by plasma treatment. Appl. Surf. Sci. 2006, 252, 3375–3379. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Liu, Y.L.; Bin, Y.; Ge, Y.F.; Lin, F.C. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode. J. Appl. Phys. 2014, 115, 023301. [Google Scholar]
- Teng, Y.; Li, L.; Liu, Y.L.; Liu, L.; Liu, M. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses. Phys. Plasmas 2014, 21, 103510. [Google Scholar]
- Zhu, Z.; Zhang, G.; Liu, L.; Li, Y. The research on atmospheric pressure glow-like discharge plasma. In Proceedings of the 33rd IEEE International Conference on Plasma Science, Traverse City, MI, USA, 4–8 June 2006; p. 172. [Google Scholar]
- Qi, B.; Ren, C.; Wang, D.; Li, S.Z.; Wang, K.; Zhang, Y. Uniform glowlike plasma source assisted by preionization of spark in ambient air at atmospheric pressure. Appl. Phys. Lett. 2006, 89, 131503. [Google Scholar] [CrossRef]
- Mei, H.; Feng, J.; Wang, J.; Zhang, X.; Li, Y.; Yan, Y. Synthesis and characterization of nano-HA/PA66 composites. J. Mater. Sci. Mater. Med. 2003, 14, 655–660. [Google Scholar]
- Niu, Z.; Zhang, C.; Shao, T.; Fang, Z.; Yu, Y.; Yan, P. Repetitive nanosecond-pulse dielectric barrier discharge and its application on surface modification of polymers. Surf. Coat. Technol. 2013, 228, S578–S582. [Google Scholar] [CrossRef]
- Bismarck, A.; Richter, D.; Wuertz, C.; Springer, J. Basic and acidic surface oxides on carbon fiber and their influence on the expected adhesion to polyamide. Colloids Surf. A Physicochem. Eng. Asp. 1999, 159, 341–350. [Google Scholar] [CrossRef]
- Cai, Z.; Hwang, Y.J.; Park, Y.C.; Zhang, C.; Mccord, M.; Qiu, Y. Preliminary investigation of atmospheric pressure plasma-aided desizing for cotton fabrics. AATCC Rev. 2002, 2, 18–21. [Google Scholar]
- Teng, Y.; Li, L.; Cheng, Y.; Ma, N.; Peng, M.Y.; Liu, M.H. Optical and electrical investigation of a cylindrical diffuse-discharge chamber. Phys. Plasmas 2015, 22, 033503. [Google Scholar]
- Wakida, T.; Lee, M.; Sato, Y. Dyeing properties of oxygen low-temperature plasma-treated wool and nylon 6 fibres with acid and basic dyes. Color. Technol. 2008, 112, 233–236. [Google Scholar] [CrossRef]
- Yip, J.; Chan, K.; Sin, K.; Kai, L. Study of plasma-etched and laser-irradiated polyamide materials. Mater. Res. Innov. 2002, 6, 44–50. [Google Scholar] [CrossRef]
- Wavhal, D.S.; Fisher, E.R. Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling. Langmuir 2002, 19, 79–85. [Google Scholar] [CrossRef]
- Fu, R.K.Y.; Mei, Y.F.; Wan, G.J.; Siu, G.G.; Chu, P.K.; Huang, Y.X.; Tian, X.B.; Yang, S.Q.; Chen, J.Y. Surface composition and surface energy of Teflon treated by metal plasma immersion ion implantation. Surf. Sci. 2004, 573, 426–432. [Google Scholar] [CrossRef]
- Kim, S.H.; Su, H.C.; Lee, N.E.; Kim, H.M.; Yun, W.N.; Kim, Y.H. Adhesion properties of Cu/Cr films on polyimide substrate treated by dielectric barrier discharge plasma. Surf. Coat. Technol. 2005, 193, 101–106. [Google Scholar] [CrossRef]
- Wha, O.K.; Hun, K.S.; Ae, K.E. Improved surface characteristics and the conductivity of polyaniline–nylon 6 fabrics by plasma treatment. J. Appl. Polym. Sci. 2001, 81, 684–694. [Google Scholar]
- Inagaki, N.; Tasaka, S.; Kawai, H. Surface modification of aromatic polyamide film by oxygen plasma. J. Polym. Sci. A Polym. Chem. 2003, 33, 2001–2011. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Kawai, H.; Yamada, Y. Surface modification of aromatic polyamide film by remote oxygen plasma. J. Appl. Polym. Sci. 1997, 64, 831–840. [Google Scholar] [CrossRef]
- Perni, S.; Shama, G.; Hobman, J.L.; Lund, P.A.; Kershaw, C.J.; Hidalgo-Arroyo, G.A.; Penn, C.W.; Deng, X.T.; Walsh, J.L.; Kong, M.G. Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants. Appl. Phys. Lett. 2007, 90, 073902. [Google Scholar] [CrossRef]
- Zille, A.; Fernandes, M.M.; Francesko, A.; Tzanov, T.; Fernandes, M.; Oliveira, F.R.; Almeida, L.; Amorim, T.; Carneiro, N.; Esteves, M.F. Size and aging effects on antimicrobial efficiency of silver nanoparticles coated on polyamide fabrics activated by atmospheric DBD plasma. ACS Appl. Mater. Interfaces 2015, 7, 13731–13744. [Google Scholar] [CrossRef] [PubMed]
Sample | Element Content (%) | Ratio | ||||
---|---|---|---|---|---|---|
C1s | O1s | N1s | O/C | N/C | (O + N)/C | |
Control | 77.93 | 13.75 | 8.32 | 0.18 | 0.11 | 0.29 |
Processed 10 s | 76.63 | 16.38 | 6.99 | 0.21 | 0.10 | 0.31 |
Processed 60 s | 72.40 | 18.76 | 8.84 | 0.26 | 0.12 | 0.38 |
Sample | Carbon-Containing Groups (%) | ||||
---|---|---|---|---|---|
C–C | C–N | C–O/C–OH | CONH | COOH | |
Control | 40.35 | 47.05 | 4.06 | 8.54 | 0 |
Processed 10 s | 60.87 | 15.87 | 12.36 | 7.59 | 3.30 |
Processed 60 s | 37.00 | 23.05 | 15.54 | 24.42 | 0 |
Sample | Oxygen-Containing Groups (%) | |
---|---|---|
C–O/C–OH | CONH/COOH | |
Control | 10.04 | 89.96 |
Processed 10 s | 18.06 | 81.94 |
Processed 60 s | 47.10 | 52.90 |
Sample | Element Content (%) | Ratio | ||||
---|---|---|---|---|---|---|
C1s | O1s | N1s | O/C | N/C | (O + N)/C | |
Reference | 80.11 | 15.76 | 4.13 | 0.20 | 0.05 | 0.25 |
One day (air) | 77.08 | 13.85 | 9.07 | 0.18 | 0.12 | 0.30 |
One day (bag) | 73.02 | 17.13 | 9.85 | 0.23 | 0.13 | 0.36 |
Three days (air) | 77.41 | 14.17 | 8.42 | 0.18 | 0.11 | 0.29 |
Three days (bag) | 74.75 | 16.28 | 8.96 | 0.22 | 0.12 | 0.34 |
Sample | Carbon-Containing Groups (%) | |||
---|---|---|---|---|
C–C | C–N | C–O/C–OH | CONH | |
One day (air) | 42.37 | 40.20 | 5.59 | 11.84 |
One day (bag) | 47.10 | 27.48 | 10.19 | 15.23 |
Three days (air) | 47.74 | 35.44 | 5.48 | 11.35 |
Three days (bag) | 45.60 | 32.42 | 9.02 | 12.96 |
Sample | Oxygen-Containing Groups (%) | |
---|---|---|
C–O/C–OH | CONH/COOH | |
One day (air) | 8.73 | 91.27 |
One day (bag) | 16.53 | 83.47 |
Three days (air) | 13.25 | 86.75 |
Three days (bag) | 20.02 | 79.98 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, M.; Li, L.; Xiong, J.; Hua, K.; Wang, S.; Shao, T. Study on Surface Properties of Polyamide 66 Using Atmospheric Glow-Like Discharge Plasma Treatment. Coatings 2017, 7, 123. https://doi.org/10.3390/coatings7080123
Peng M, Li L, Xiong J, Hua K, Wang S, Shao T. Study on Surface Properties of Polyamide 66 Using Atmospheric Glow-Like Discharge Plasma Treatment. Coatings. 2017; 7(8):123. https://doi.org/10.3390/coatings7080123
Chicago/Turabian StylePeng, Mingyang, Lee Li, Jiaming Xiong, Kui Hua, Shufan Wang, and Tao Shao. 2017. "Study on Surface Properties of Polyamide 66 Using Atmospheric Glow-Like Discharge Plasma Treatment" Coatings 7, no. 8: 123. https://doi.org/10.3390/coatings7080123
APA StylePeng, M., Li, L., Xiong, J., Hua, K., Wang, S., & Shao, T. (2017). Study on Surface Properties of Polyamide 66 Using Atmospheric Glow-Like Discharge Plasma Treatment. Coatings, 7(8), 123. https://doi.org/10.3390/coatings7080123