Green Biobased Polyethylene Terephthalate (bioPET) Composites Reinforced with Different Lengths of Basalt Fiber for Technical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Composite Preparation
- (1)
- BCS 13–3.2—KV02M with diameter 13 μm, cut length 3.2 mm (short fibers),
- (2)
- BCS 17–6.4—KV16 with diameter 17 μm, cut length 6.4 mm (long fibers)
2.2. Testing Methods
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Mechanical and Fatigue Tests
2.2.3. Contact Angle and Total Surface Free Energy by the Owens–Wendt Method
- —total surface free energy,
- —the dispersive component of the surface free energy,
- —the polar component of the surface free energy.
3. Results and Discussion
3.1. Scanning Electron Microscope (SEM) Micrographs
3.2. Mechanical Properties
3.2.1. Static Tensile and Three-Point Bending Tests
- (1)
- Conversion of mass proportion to volume fraction of fibers:
- —fiber volume fraction
- —fiber mass fraction
- —fiber density
- —matrix density
- (2)
- Theoretical Young’s modulus when the composite carries loads in the direction parallel to the fibers
- —composite, fiber, matrix Young’s modulus
- (3)
- Theoretical Young’s modulus when the composite carries loads in the direction perpendicular to the fibers:
3.2.2. Low Cycle Dynamic Test
3.2.3. High Cycle Dynamic Test
- bioPET
- bioPET + 7.5 SB
- bioPET + 7.5 LB
- bioPET + 15 SB
- bioPET + 15 LB
3.2.4. Contact Angle and Total Surface Free Energy by the Owens–Wendt Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Romain, C.; Williams, C. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.E.; Lee, J. Polyethylene terephthalate production from a carbon neutral resource. J. Clean. Prod. 2024, 469, 143210. [Google Scholar] [CrossRef]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374–378. [Google Scholar] [CrossRef]
- Hillmyer, M.A. The promise of plastics from plants. Science 2017, 358, 868–870. [Google Scholar] [CrossRef]
- Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.J. Bio-based plastics—A review of environmental, social and economic impact assessments. J. Clean. Prod. 2018, 185, 476–491. [Google Scholar] [CrossRef]
- Abbood, I.S.; Odaa, S.A.; Hasan, K.F.; Jasim, M.A. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures—A review. Mater. Today Proc. 2021, 43 Pt 2, 1003–1008. [Google Scholar] [CrossRef]
- Gupta, M.K.; Srivastava, R.K. Mechanical Properties of Hybrid Fibres Reinforced Polymer Composite: A Review. Polym.-Plast. Technol. Eng. 2015, 55, 626–642. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef]
- Prashanth, S.; Subbaya, K.M.; Nithin, K.; Sachhidananda, S. Fiber reinforced composites—A review. J. Mater. Sci. Eng 2017, 6, 2–6. [Google Scholar]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos. Part B Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Li, Z.; Ma, J.; Ma, H.; Xu, X. Properties and Applications of Basalt Fiber and Its Composites. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 012052. [Google Scholar] [CrossRef]
- Militký, J.; Mishra, R.; Jamshaid, H. 20—Basalt fibers. In Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 805–840. ISBN 9780081012727. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A green material from rock: Basalt fiber—A review. J. Text. Inst. 2015, 107, 923–937. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Tavadi, A.R.; Naik, Y.; Kumaresan, K.; Jamadar, N.I.; Rajaravi, C. Basalt fiber and its composite manufacturing and applications: An overview. Int. J. Eng. Sci. Technol. 2021, 13, 50–56. [Google Scholar] [CrossRef]
- Pareek, K.; Saha, P. Basalt Fiber and Its Composites: An Overview. In Proceedings of the National Conference on Advances in Structural Technologies (CoAST-2019), Silchar, India, 1–3 February 2019. [Google Scholar]
- Singha, K. A short review on basalt fiber. Int. J. Text. Sci. 2012, 1, 19–28. [Google Scholar]
- Liu, J.; Chen, M.; Yang, J.; Wu, Z. Study on Mechanical Properties of Basalt Fibers Superior to E-glass Fibers. J. Nat. Fibers 2020, 19, 882–894. [Google Scholar] [CrossRef]
- Kessler, E.; Gadow, R.; Straub, J. Basalt, glass and carbon fibers and their fiber reinforced polymer composites under thermal and mechanical load. AIMS Mater. Sci. 2016, 3, 1561–1576. [Google Scholar] [CrossRef]
- King, F.L. Basalt Fiber: An Ancient Material for Innovative and Modern Application. Middle East J. Sci. Res. 2014, 22, 308–312. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wu, Z.; Dong, Z.; Zhang, G. Durability of basalt fibers and composites in corrosive environments. J. Compos. Mater. 2015, 49, 873–887. [Google Scholar] [CrossRef]
- Amaro, A.; Pinto, D.; Bernardo, L.; Lopes, S. Basalt Fibers used as Reinforcing Materials in Different Polymers—A Review. In Proceedings of the Fourth International Conference on Innovative Natural Fibre Composites for Industrial Applications, Rome, Italy, 17–18 October 2013. [Google Scholar]
- Kumbhar, V.P. An overview: Basalt rock fibers-new construction material. Acta Eng. Int. 2014, 2, 11–18. [Google Scholar]
- Ronkay, F.; Czigány, T. Development of composites with recycled PET matrix. Polym. Adv. Technol. 2006, 17, 830–834. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, J.; Han, C.; Zhang, X.; Wu, Z. Silane coupling agent impact on surface features of modification of basalt fibers and the rheological properties of basalt fiber reinforced asphalt. Constr. Build. Mater. 2023, 366, 130182. [Google Scholar] [CrossRef]
- Arslan, C.; Dogan, M. The effects of fiber silane modification on the mechanical performance of chopped basalt fiber/ABS composites. J. Thermoplast. Compos. Mater. 2020, 33, 1449–1465. [Google Scholar] [CrossRef]
- Arslan, C.; Dogan, M. The effects of silane coupling agents on the mechanical properties of basalt fiber reinforced poly(butylene terephthalate) composites. Compos. Part B Eng. 2018, 146, 145–154. [Google Scholar] [CrossRef]
- Kracalik, M.; Pospíšil, L.; Slouf, M.; Mikesova, J.; Sikora, A.; Šimoník, J.; Fortelný, I. Recycled poly(ethylene terephthalate) reinforced with basalt fibres: Rheology, structure, and utility properties. Polym. Compos. 2008, 29, 437–442. [Google Scholar] [CrossRef]
- Ralph, C.; Lemoine, P.; Archer, E.; McIlhagger, A. Mechanical properties of short basalt fibre reinforced polypropylene and the effect of fibre sizing on adhesion. Compos. Part B Eng. 2019, 176, 107260. [Google Scholar] [CrossRef]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable Fiber-Reinforced Composites: A Review. Adv. Sustain. Syst. 2022, 6, 2200258. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Z.; Zhu, Z.; Guo, Q.; Wu, X.; Zhao, R. Research on different types of fiber reinforced concrete in recent years: An overview. Constr. Build. Mater. 2023, 365, 130075. [Google Scholar] [CrossRef]
- Nawafleh, N.; Celik, E. Additive manufacturing of short fiber reinforced thermoset composites with unprecedented mechanical performance. Addit. Manuf. 2020, 33, 101109. [Google Scholar] [CrossRef]
- Zhang, D.; He, M.; Qin, S.; Yu, J. Effect of fiber length and dispersion on properties of long glass fiber reinforced thermoplastic composites based on poly(butylene terephthalate). RSC Adv. 2017, 7, 15439–15454. [Google Scholar] [CrossRef]
- Arslan, C.; Dogan, M. The mechanical and thermal properties of chopped basalt fiber-reinforced poly (butylene terephthalate) composites: Effect of fiber amount and length. J. Compos. Mater. 2019, 53, 2465–2475. [Google Scholar] [CrossRef]
- Blackman, Z.; Olonisakin, K.; MacFarlane, H.; Rodriguez-Uribe, A.; Tripathi, N.; Mohanty, A.K.; Misra, M. Sustainable Basalt Fiber Reinforced Polyamide 6,6 Composites: Effects of Fiber Length and Fiber Content on Mechanical Performance. Compos. Part C Open Access 2024, 14, 100495. [Google Scholar] [CrossRef]
- Amuthakkannan, P.; Manikandan, V.; Jappes, J.W.; Uthayakumar, M. Effect of fibre length and fibre content on mechanical properties of short basalt fibre reinforced polymer matrix composites. Mater. Phys. Mech. 2013, 16, 107–117. [Google Scholar]
- PN-EN ISO 3167:2004; Plastics—Multipurpose Test Specimens. ISO: Geneva, Switzerland, 2014.
- PN-EN ISO 1183-1:2019-12; Plastics—Determination of Density of Non-Foamed Plastics—Part 1: Immersion Method, Pycnometer Method and Displacement Method. ISO: Geneva, Switzerland, 2019.
- PN-EN ISO 527-1:2019-12; Plastics—Determination of Tensile Properties—Part 1: General Principles. ISO: Geneva, Switzerland, 2019.
- PN-EN ISO 178:2019-10; Plastics—Determination of Flexural Properties. ISO: Geneva, Switzerland, 2019.
- PN-EN ISO 179-1:2010; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2010.
- Rudawska, A.; Jacniacka, E. Analysis for determining surface free energy uncertainty by the Owen–Wendt method. Int. J. Adhes. Adhes. 2009, 29, 451–457. [Google Scholar] [CrossRef]
- Żenkiewicz, M. Methods for the calculation of surface free energy of solids. J. Achiev. Mater. Manuf. Eng. 2007, 24, 137–145. [Google Scholar]
Samples | Compositions | Density [g/cm3] |
---|---|---|
bioPET | bioPET Ecozen T120 | 1.252 |
bioPET + 7.5 SB | bioPET + 7.5% short basalt fibers | 1.317 |
bioPET + 7.5 LB | bioPET + 7.5% long basalt fibers | 1.305 |
bioPET + 15 SB | bioPET + 15% short basalt fibers | 1.350 |
bioPET + 15 LB | bioPET + 15% long basalt fibers | 1.346 |
Samples | Tensile Test | Bending Test | Impact Strength [kJ/m2] | ||||
---|---|---|---|---|---|---|---|
Tensile Strength [MPa] | Young’s Modulus [MPa] | Strain at Break [%] | Bending Strength [MPa] | Flexural Modulus [MPa] | Max. Deflection [mm] | ||
bioPET | 53.7 ± 0.5 | 2425 ± 133 | 78.2 ± 5.2 | 84.5 ± 0.4 | 2328 ± 79 | >10 | - |
bioPET + 7.5 SB | 75.4 ± 3.3 | 4396 ± 151 | 4.6 ± 0.1 | 102.7 ± 2 | 3117 ± 96 | 9.8 ± 0.3 | 23.1 ± 1.8 |
bioPET + 7.5 LB | 67.8 ± 1.3 | 4315 ± 103 | 4.4 ± 0.1 | 94.7 ± 3.0 | 2705 ± 150 | 11.7 ± 0.5 | 20.2 ± 2.3 |
bioPET + 15 SB | 84 ± 4.6 | 5987 ± 312 | 3.9 ± 0.2 | 120.9 ± 4.8 | 4142 ± 122 | 5.9 ± 0.2 | 32.3 ± 3.6 |
bioPET + 15 LB | 75.9 ± 3.4 | 5402 ± 371 | 4 ± 0.2 | 106.9 ± 1.7 | 3599 ± 187 | 6.6 ± 0.4 | 28.1 ± 1.2 |
Sample | Contact Angle θ in Degrees | ||
---|---|---|---|
Water | Diiodomethane | Total Surface Free Energy [mJ/m2] | |
bioPET | 85.7 ± 4.5 | 28.6 ± 0.5 | 46.0 ± 2.1 |
bPET + 7.5 SB | 76.5 ± 1.6 | 45.4 ± 2.6 | 42.2 ± 1.9 |
bPET + 7.5 LB | 85.7 ± 1.4 | 35.4 ± 3.3 | 43.2 ± 2.8 |
bPET+ 15 SB | 88.3 ± 3.8 | 33.0 ± 2.0 | 43.9 ± 4.2 |
bPET+ 15 LB | 79.6 ± 1.7 | 42.7 ± 2.7 | 42.1 ± 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuciel, S.; Rusin-Żurek, K. Green Biobased Polyethylene Terephthalate (bioPET) Composites Reinforced with Different Lengths of Basalt Fiber for Technical Applications. Fibers 2024, 12, 73. https://doi.org/10.3390/fib12090073
Kuciel S, Rusin-Żurek K. Green Biobased Polyethylene Terephthalate (bioPET) Composites Reinforced with Different Lengths of Basalt Fiber for Technical Applications. Fibers. 2024; 12(9):73. https://doi.org/10.3390/fib12090073
Chicago/Turabian StyleKuciel, Stanisław, and Karina Rusin-Żurek. 2024. "Green Biobased Polyethylene Terephthalate (bioPET) Composites Reinforced with Different Lengths of Basalt Fiber for Technical Applications" Fibers 12, no. 9: 73. https://doi.org/10.3390/fib12090073
APA StyleKuciel, S., & Rusin-Żurek, K. (2024). Green Biobased Polyethylene Terephthalate (bioPET) Composites Reinforced with Different Lengths of Basalt Fiber for Technical Applications. Fibers, 12(9), 73. https://doi.org/10.3390/fib12090073